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Abstract6

A hierarchy of type universes is a rudimentary ingredient in the type theories of many proof assistants7

to prevent the logical inconsistency resulting from combining dependent functions and the type-8

in-type rule. In this work, we argue that a universe hierarchy is not the only option for a type9

theory with a type universe. Taking inspiration from Leivant’s Stratified System F, we introduce10

Stratified Type Theory (StraTT), where rather than stratifying universes by levels, we stratify11

typing judgements and restrict the domain of dependent functions to strictly lower levels. Even with12

type-in-type, this restriction suffices to enforce consistency.13

In StraTT, we consider a number of extensions beyond just stratified dependent functions.14

First, the subsystem subStraTT employs McBride’s crude-but-effective stratification (also known as15

displacement) as a simple form of level polymorphism where global definitions with concrete levels16

can be displaced uniformly to any higher level. Second, to recover some expressivity lost due to17

the restriction on dependent function domains, the full StraTT includes a separate nondependent18

function type with a floating domain whose leve matches that of the overall function type. Finally,19

we have implemented a prototype type checker for StraTT extended with datatypes and inference20

for level and displacement annotations, along with a small core library.21

We have proven StraTT to be type safe and subStraTT to be consistent, but consistency of the22

full StraTT remains an open problem, largely due to the interaction between floating functions and23

cumulativity of judgements. Nevertheless, we believe StraTT to be consistent, and as evidence have24

verified the failure of some well-known type-theoretic paradoxes using our implementation.25
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1 Introduction31

Ever since their introduction in Martin-Löf’s intuitionistic type theory (MLTT) [31], depen-32

dent type theories have included hierarchies of type universes in order to rectify the logical33

inconsistency of the type-in-type axiom. That is, rather than the universe ? of types being34

its own type, these type theories have universes ?k indexed by a sequence of levels k such35

that the type of a universe is the universe at the next higher level.36

Such a universe hierarchy is a rudimentary ingredient in many contemporary proof37

assistants, such as Coq [10], Agda [35], Lean [15], F* [42], and Arend [9]. For greater38

expressiveness, all of these also implement some sort of level polymorphism. Supporting39

such generality means that the proof assistant must handle level variable constraints, level40

expressions, or both. However, programming with and especially debugging errors involving41

universe levels is a common pain point among proof assistant users. So we ask: do all roads42

necessarily lead to level polymorphism and more generally a universe hierarchy, or are there43

other avenues to be taken?44
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In this work, we design Stratified Type Theory (StraTT) to explore one potential
alternative: rather than stratifying universes into a hierarchy, we instead stratify typing
judgements themselves by levels. This is inspired by Leivant’s Stratified System F [26],
a predicative variant of System F [19, 36]. Recall the formation rule for polymorphic
type quantification in System F, given below on the left. The quantification is said to be
impredicative because it quantifies over all types including itself, and so the type ∀x. B itself
can be substituted for x in B.

F-impredicative
Γ, x type ` B type

Γ ` ∀x. B type

F-stratified
Γ, x type j ` B type k j < k

Γ ` ∀xj . B type k

In contrast, the formation rule in Stratified System F above on the right disallows45

impredicativity by restricting polymorphic quantification to only types that are well formed46

at strictly lower stratification levels, and type well-formedness judgements are additionally47

indexed by a level.48

To extend stratified polymorphism to dependent types, there are two ways to read this49

judgement form. We could interpret Γ ` A type k as a type A living in some stratified50

type universe ?k, which would correspond to a usual predicative type theory where ?j : ?k51

when j < k. Alternatively, we can continue to interpret the level k as a property of the52

judgement and generalize it to the judgement form Γ ` a :k A, where variables x :k A are53

also annotated with a level within the context Γ. Guided by these principles, we introduce54

stratified dependent function types Πx :j A. B, which similarly quantify over types at the55

annotated level j that must be strictly lower than the overall level of the type.56

To enable code reuse, in place of level polymorphism, we employ McBride’s crude-but-57

effective [33]. Following Favonia, Angiuli, and Mullanix [21], we refer to this as displacement58

to prevent confusion. Given some signature ∆ of global definitions, we are permitted to use59

any definition with all of its levels uniformly displaced upwards.60

However, even in the presence of displacement, we find that stratification is sometimes61

too restrictive and can rule out terms that are otherwise typeable in an unstratified system.62

Therefore, StraTT includes a separate unstratified nondependent function type with a floating63

domain, so called because of its behaviour in the presence of cumulativity with respect to the64

levels. For a dependent function type, cumulativity can raise its overall level, but the level65

of the domain type remains fixed due to its level annotation. For a floating, nondependent66

function type whose level is raised by cumulativity, the domain type here instead floats to67

have the same level.68

In the absence of floating nondependent functions, with only stratified dependent functions,69

consistency holds even with type-in-type, because the restriction on the domains of dependent70

functions prevents the kind of self-referential trickery that permits the usual paradoxes.71

However, we haven’t yet proven consistency with the inclusion of floating nondependent72

functions; the primary barrier is the covariant behaviour of the floating domain with respect73

to levels, which is unusual for function types. Even so, we have found it impossible to encode74

some well-known type-theoretic paradoxes, leading us to believe that consistency does hold,75

which would make the system suitable as a foundation for theorem proving.76

These features form the basis of StraTT, and our contributions are as follows:77

A subsystem subStraTT, featuring only stratified dependent functions and displace-78

ment, which is then extended to the full StraTT with floating nondependent functions.79

↪→ Section 280
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A number of examples to demonstrate the expressivity of StraTT and especially to81

motivate floating functions. ↪→ Section 382

Two major metatheorems: logical consistency for subStraTT, which is mechanized in83

Agda, and type safety for StraTT, which is mechanized in Coq. Consistency for the full84

StraTT remains an open problem. ↪→ Section 485

A prototype implementation of a type checker, which extends StraTT to include datatypes86

to demonstrate the effectiveness of stratification and displacement in practical dependently-87

typed programming. ↪→ Section 588

We discuss potential avenues for proving consistency of the full StraTT and compare the89

useability of its design to existing proof assistants in terms of working with universe levels90

in Section 6, and conclude in Section 7. Our Agda and Coq mechanizations along with the91

prototype implementation are available in the supplementary material. Where lemmas and92

theorems are first introduced, we include a footnote indicating the corresponding source file93

and lemma name in the development.94

2 Stratified Type Theory95

In this section, we present Stratified Type Theory in two parts. First is the subsystem96

subStraTT, which contains the two core features of stratified dependent function types and97

global definitions with level displacement. We then extend it to the full StraTT by adding98

floating nondependent function types. As the system is fairly small with few parts, we delay99

illustrative examples to Section 3, and begin with the formal description.100

2.1 The subsystem subStraTT101

The subsystem subStraTT is a cumulative, extrinsic type theory with types à la Russell, a102

single type universe, dependent functions, an empty type, and global definitions. The most103

significant difference between subStraTT and other type theories with these features is the104

annotation of the typing judgement with a level in place of universes in a hierarchy. We105

use the naturals and their usual strict order and addition operation for our levels, but they106

should be generalizable to any displacement algebra [21]. The syntax is given below, with107

x, y, z for variable and constant names and i, j, k for levels.108

a, b, c, A, B, C ::= ? | x | x i | Πx :j A. B | λx. b | b a | ⊥ | absurd(b)109

The typing judgement has the form ∆; Γ ` a :k A ; its typing rules are given in Figure 1.110

The judgement states that term a is well typed at level k with type A under the context111

Γ and signature ∆. A context consists of declarations x :k A of variables x of type A at112

level k; variables represent locations where an entire typing derivation may be substituted113

into the term, so they also need level annotations. A signature consists of global definitions114

x :k A := a of constants x of type A definitionally equal to a at level k; they represent115

complete typing derivations that will eventually be substituted into the term.116

Because stratified judgements replace stratified universes, the type of the type universe ?117

is itself at any level in rule DT-Type. Stratification is enforced in dependent function types118

in rule DT-Pi: the domain type must be well typed at a strictly smaller level relative to119

the codomain type and the overall function type. Similarly, in rule DT-AbsTy, the body120

of a dependent function is well typed when its argument and its type are well typed at a121

strictly smaller level, and by rule DT-AppTy, a dependent function can only be applied to122

an argument at the strictly smaller domain level.123
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∆; Γ ` a :k A (Typing)

DT-Type
∆ ` Γ

∆; Γ ` ? :k ?

DT-Pi
∆; Γ ` A :j ?

∆; Γ, x :j A ` B :k ?

j < k
∆; Γ ` Πx :j A. B :k ?

DT-AbsTy
∆; Γ ` A :j ?

∆; Γ, x :j A ` b :k B
j < k

∆; Γ ` λx. b :k Πx :j A. B

DT-AppTy
∆; Γ ` b :k Πx :j A. B

∆; Γ ` a :j A j < k
∆; Γ ` b a :k B{a/x}

DT-Var
x : jA ∈ Γ

∆ ` Γ j ≤ k
∆; Γ ` x :k A

DT-Const
x : jA := a ∈ ∆ ∆ ` Γ

` ∆ i + j ≤ k
∆; Γ ` x i :k A+i

DT-Bottom
∆ ` Γ

∆; Γ ` ⊥ :k ?

DT-Absurd
∆; Γ ` A :k ?

∆; Γ ` b :k ⊥
∆; Γ ` absurd(b) :k A

DT-Conv
∆; Γ ` a :k A
∆; Γ ` B :k ?

∆ ` A ≡ B
∆; Γ ` a :k B

Figure 1 Typing rules (subStraTT)

Note that the level annotation on dependent function types is necessary for consistency.124

Informally, suppose we have some unannotated type ΠX :?. B and a function of this type,125

both at level 1. By cumulativity, we can raise the level of the function to 2, then apply it to126

its own type ΠX :?. B. In short, impredicativity is reintroduced, and stratification defeated.127

Rules DT-Bottom and DT-Absurd are the uninhabited type and its eliminator,128

respectively. It should be consistent to eliminate a falsehood into any level, including lower129

levels, but when viewed bottom-up, the level of the conclusion represents the level of the130

entire derivation tree, or the level of all the pieces used to construct the tree, so it wouldn’t131

make sense to allow premises at higher levels.132

In rules DT-Var and DT-Const, variables and constants at level j can be used at any133

larger level k, which we refer to as subsumption. This permits the following admissible134

cumulativity lemma, allowing entire derivations to be used at larger levels.135

I Lemma 1 (Cumulativity).1 If ∆; Γ ` a :j A and j ≤ k then ∆; Γ ` a :k A.136

Constants are also annotated with a superscript indicating how much they’re displaced137

by. If a constant x is defined with a type A, we’re permitted to use x i as an element of type138

A but with all of its levels incremented by i. The metafunction a+i performs this increment139

in the term a, defined recursively with (Πx :j A. B)+i = Πx :i+j A+i . B+i and (x j)+i = x i+j .140

Constants come from signatures and variables from contexts, whose key formation rules for141

the judgements ` ∆ and ∆ ` Γ respectively are given below.142

D-Cons
` ∆ ∆;∅ ` A :k ?

∆;∅ ` a :k A x 6∈ dom ∆
` ∆, x :k A := a

DG-Cons
∆ ` Γ

∆; Γ ` A :k ? x 6∈ dom Γ x 6∈ dom ∆
∆ ` Γ, x :k A143

1 coq/restrict.v:DTyping_cumul

https://github.com/plclub/StraTT/tree/main/coq/restrict.v
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In rule DT-Conv, we use an untyped definitional equality ∆ ` a ≡ b that is reflex-144

ive, symmetric, transitive, and congruent, and includes β-equivalence for functions and145

δ-equivalence of constants x with their definitions. When a constant is displaced as x i , we146

must also increment the level annotations in their definitions by i. Below are the rules for β-147

and δ-equivalence; the remaining rules can be found in Appendix A.148

DE-Beta

∆ ` (λx. b) a ≡ b{a/x}

DE-Delta
x :kA := a ∈ ∆
∆ ` x i ≡ a+i

149

Given a well-typed, locally-closed term ∆;∅ ` a :k A, the entire derivation itself can be150

displaced upwards by some increment i. This lemma differs from cumulativity, since the level151

annotations in the term and its type are displaced as well, not just that of the judgement.152

I Lemma 2 (Displaceability (empty context)).2 If ∆;∅ ` a :k A then ∆;∅ ` a+i :i+k A+i.153

With x :k A := a in the signature, x i is definitionally equal to a+i , so this lemma justifies154

rule DT-Const, which would give this displaced constant the type A+i .155

2.2 Floating functions156

As we’ll see in the next section, subStraTT alone is insufficiently expressive, with some157

examples being unexpectedly untypeable and others being simply clunky to work with as a158

result of the strict restriction on function domains. The full StraTT system therefore extends159

the subsystem with a separate nondependent function type, written A → B, whose domain160

doesn’t have the same restriction.161

DT-Arrow
∆; Γ ` A :k ?

∆; Γ ` B :k ?

∆; Γ ` A → B :k ?

DT-AbsTm
∆; Γ ` A :k ?

∆; Γ ` B :k ?

∆; Γ, x :k A ` b :k B
∆; Γ ` λx. b :k A → B

DT-AppTm
∆; Γ ` b :k A → B

∆; Γ ` a :k A
∆; Γ ` b a :k B

Figure 2 Typing rules (floating functions)

The typing rules for nondependent function types, functions, and application are given162

in Figure 2. The domain, codomain, and entire nondependent function type are all typed163

at the same level. Functions take arguments of the same level as their bodies, and are thus164

applied to arguments of the same level.165

This distinction between stratified dependent and unstratified nondependent functions166

corresponds closely to Stratified System F: type polymorphism is syntactically distinct from167

ordinary function types, and the former forces the codomain to be a higher level while the168

latter doesn’t. From the perspective of Stratified System F, the dependent types of StraTT169

generalize stratified type polymorphism over types to include term polymorphism.170

We say that the domain of these nondependent function types floats because unlike the171

stratified dependent function types, it isn’t fixed to some particular level. The interaction172

between floating functions and cumulativity is where this becomes interesting. Given a173

function f of type A → B at level j, by cumulativity, it remains well typed with the same174

type at any level k ≥ j. The level of the domain floats up from j to match the function at k,175

2 coq/incr.v:DTyping_incr

https://github.com/plclub/StraTT/tree/main/coq/incr.v
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in the sense that f can be applied to an argument of type A at any greater level k. This is176

unusual because the domain isn’t contravariant with respect to the ordering on the levels177

as we might expect, and is why, as we’ll see shortly, the proof of consistency in Section 4.1178

can’t be straightforwardly extended to accommodate floating function types.179

3 Examples180

3.1 The identity function181

In the following examples, we demonstrate why floating functions are essential. Below on the182

left is one way we could assign a type to the type-polymorphic identity function. For concision,183

we use a pattern syntax when defining global functions and place function arguments to the184

left of the definition. (The subscript is part of the constant name.)185

id0 :1 ΠX :0 ?. Πx :0 X . X id :1 ΠX :0 ?. X → X186

id0 X x := x id X x := x187

Stratification enforces that the codomain of the function type and the function body have188

a higher level than that of the domain and the argument, so the overall identity function is189

well typed at level 1. While x and X have level 0 in the context of the body, by subsumption,190

we can use x at level 1 in the body as required.191

Alternatively, since the return type doesn’t depend on the second argument, we can use192

a floating function type instead, given above on the right. Since we still have a dependent193

type quantification, the function X → X is still typed at level 1. This means that x now has194

level 1 directly rather than through subsumption.195

So far, there’s no reason to pick one over the other, so let’s look at a more involved196

example: applying an identity function to itself. This is possible due to cumulativity, and197

we’ll follow the corresponding Coq example below.198

Universes u0 u1.

Constraint u0 < u1.

Definition idid1 (id : forall (X : Type@{u1}), X -> X) :

forall (X : Type@{u0}), X -> X :=

id (forall (X : Type@{u0}), X -> X) (fun X => id X).

Here, since forall (X : Type@{u0}), X -> X can be assigned type Type@{u1}, it can be199

applied as the first argument to id. While id itself doesn’t have this type, we can η-expand it200

to a function that does, since Type@{u0} is a subtype of Type@{u1}, so X can be passed to id.201

If we try to write the analogous definition in subStraTT without using floating functions,202

we find that it doesn’t type check! The problematic subterm is underlined in red below.203

idid1 :3 Πid :2 (ΠX :1 ?. Πx :1 X . X). ΠX :0 ?. Πx :0 X . X204

idid1 id := id (ΠX :0 ?. Πx :0 X . X) (λX . λx. id X x)205

After η-expansion, λX . λx. id X x has the correct type ΠX :0 ?. Πx :0 X . X , but only at206

level 2, since that’s the level of id itself. Meanwhile, the second argument of id expects207

an argument of that type but at level 1. We can’t just raise the level annotation for that208

argument to 2, either, since that would raise the level of id to 3.209

If we instead use floating functions for the nondependent argument, the analogous210

definition then does type check, since the second argument of type X can now be at level 2.211

idid1 :2 (ΠX :1 ?. X → X) → ΠX :0 ?. X → X212



J. Chan, S. Weirich XX:7

idid1 id := id (ΠX :0 ?. X → X) (λX . id X)213

This definition of idid1 is now pretty much shaped the same as the Coq version, only214

with level annotations on domains where Coq has the corresponding level annotations on215

Type. If we were to turn on universe polymorphism in Coq, it would achieve the same kind216

of expressivity of being able to displace idid2 in StraTT. The only difference is that while217

Coq merely enforces a strict inequality constraint between the levels, in StraTT the levels218

annotations are concrete, so even with displacement, the distance between the two levels in219

the type is always 1.220

As an additional remark, even with floating functions, repeatedly nesting identity function221

self-applications is one way to non-trivially force the level to increase. The following definitions222

continue the pattern from idid1, which in the untyped setting would correspond to λid. id id,223

λid. id (λid. id id) id, λid. id (λid. id (λid. id id) id) id, and so on.224

idid2 :3 (ΠX :2 ?. X → X) → ΠX :0 ?. X → X225

idid2 id := id ((ΠX :1 ?. X → X) → ΠX :0 ?. X → X) idid1 (λX . λx. id X x)226

idid3 :4 (ΠX :3 ?. X → X) → ΠX :0 ?. X → X227

idid3 id := id ((ΠX :2 ?. X → X) → ΠX :0 ?. X → X) idid2 (λX . λx. id X x)228

All of idid1 (λX . λx. x), idid2 (λX . λx. x), and idid3 (λX . λx. x) reduce to λX . λx. x.229

3.2 Decidable types230

The following example demonstrates a more substantial use of StraTT in the form of type231

constructors as floating functions and how they interact with cumulativity. Later in Section 5232

we’ll consider datatypes with parameters, but for now, consider the following Church encoding233

[7] of decidable types, which additionally uses negation defined as implication into the empty234

type.235

neg :0 ? → ? yes :1 ΠX :0 ?. X → Dec X236

neg X := X → ⊥ yes X x := λZ . λf . λg. f x237

Dec :1 ? → ? no :1 ΠX :0 ?. neg X → Dec X238

Dec X := ΠZ :0 ?. (X → Z ) → (neg X → Z ) → Z no X nx := λZ . λf . λg. g nx239

The yes X constructor decides X by a witness, while the no X constructor decides X by240

its refutation. We’re able to show that deciding a given type is irrefutable.3241

irrDec : ΠX :0 ?. neg (neg (Dec X))242

irrDec X ndec := ndec (no X (λx. ndec (yes X x)))243

The same exercise of trying to define neg and Dec using only dependent functions and not244

floating functions to the same effect of no longer being able to type check irrDec, even if we245

allow ourselves to use displacement. More interestingly, let’s now compare these definitions246

to the corresponding ones in Agda.247

{-# OPTIONS --cumulativity #-}

open import Agda.Primitive using (lzero ; lsuc)

3 Note this differs from irrefutability of the law of excluded middle, neg (neg (ΠX :0 ?. Dec X)), which
cannot be proven constructively.
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open import Data.Empty using (⊥)

neg : ∀ ℓ → Set ℓ → Set ℓ

neg ℓ X = X → ⊥

Dec : ∀ ℓ → Set (lsuc ℓ) → Set (lsuc ℓ)

Dec ℓ X = (Z : Set ℓ) → (X → Z) → (neg (lsuc ℓ) X → Z) → Z

yes : ∀ ℓ (X : Set ℓ) → X → Dec ℓ X

yes ℓ X x = λ Z f g → f x

no : ∀ ℓ (X : Set ℓ) → neg ℓ X → Dec ℓ X

no ℓ X nx = λ Z f g → g nx

They must all be universe polymorphic to capture the expressivity of floating functions.248

For instance, to talk about the negation of a type at level 1, by cumulativity it suffices249

to use neg (without displacement!) in StraTT, but we must use neg (lsuc lzero) in Agda.250

Effectively, the StraTT type ? → ? represents not merely Set → Set but, by cumulativity, all251

types Set ℓ → Set ℓ for every ℓ.252

3.3 Leibniz equality253

Although nondependent functions can often benefit from a floating domain, sometimes we254

don’t want the domain to float. Here, we turn to a simple application of dependent types255

with Leibniz equality [25, 30] to demonstrate a situation where the level of the domain needs256

to be fixed to something strictly smaller than that of the codomain even when the codomain257

doesn’t depend on the function argument.258

eq :1 ΠX :0 ?. X → X → ? refl :1 ΠX :0 ?. Πx :0 X . eq X x x259

eq X x y := ΠP :0 X → ?. P x → P y refl X x P px := px260

An equality eq A a b states that two terms are equal if given any predicate P , a proof of261

P a yields a proof of P b; in other words, a and b are indiscernible. The proof of reflexivity262

of Leibniz equality should be unsurprising.263

We might try to define a predicate stating that a given type X is a mere proposition, i.e.264

that all of its inhabitants are equal, and give it a nondependent function type.265

isProp :0 ? → ?266

isProp X := Πx :0 X . Πy :0 X . eq X x y267

But this doesn’t type check, since the body contains an equality over elements of X, which268

necessarily has level 1 rather than the expected level 0. We must assign isProp a stratified269

function type, given below on the left; informally, stratification propagates dependency270

information not only from the codomain, but also from the function body.271

isProp :1 ΠX :0 ?. ? isSet :2 ΠX :0 ?. ?272

isProp X := Πx :0 X . Πy :0 X . eq X x y isSet X := Πx :0 X . Πy :0 X . isProp1 (eq X x y)273

Going one further, we define above on the right a predicate isSet stating that X is an274

h-set [44], or that its equalities are mere propositions, by using a displaced isProp so that275

we can reuse the definition at a higher level; here, isProp1 now has type ΠX :1 ?. ? at level 2.276

Once again, despite the type of isSet not being an actual dependent function type, here we277

need to fix the level of the domain.278
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4 Metatheory279

4.1 Consistency of subStraTT280

We use Agda to mechanize a proof of logical consistency — that no closed inhabitant of281

the empty type exists — for subStraTT, which excludes floating nondependent functions.282

For simplicity, the mechanization also excludes global definitions and displaced constants,283

which shouldn’t affect consistency: if there is a closed inhabitant of the empty type that284

uses global definitions, then there is a closed inhabitant of the empty type under the285

empty signature by inlining all global definitions. The proof files are available at https:286

//github.com/plclub/StraTT under the agda/ directory. The only axiom we use is function287

extensionality.4288

The core construction of the consistency proof is a three-place logical relation a ∈ JAKk289

among a term, its type, and its level, which we would aspirationally like to define as follows,290

using 0 for falsehood, 1 for truthhood, ∧ for conjunction, −→ for implication, and ∀ and ∃291

for universal and existential quantification in our working metatheory.292

? ∈ J?Kk , 1 Πx :j A. B ∈ J?Kk , j < k ∧ A ∈ J?Kj ∧ (∀y. y ∈ JAKj −→ B{y/x} ∈ J?Kk)293

⊥ ∈ J?Kk , 1 f ∈ JΠx :j A. BKk , ∀y. y ∈ JAKj −→ f y ∈ JB{y/x}Kk294

a ∈ J⊥Kk , 0 a ∈ JAKk , ∃B. A ≡ B ∧ a ∈ JBKk295

However, this definition isn’t necessarily well formed. It isn’t defined recursively on the296

structure of the terms or the types, because in the cases involving dependent functions, we297

need to talk about the substitution B{y/x}. It isn’t defined inductively, either, because298

again in the dependent function case, the inductive itself appears to the left of an implication299

as y ∈ JAKj , making the inductive definition non-strictly-positive.300

The solution is to define the logical relation as an inductive–recursive definition [17].301

This design is adapted from a concise proof of consistency for MLTT in Coq by Liu [28],302

which uses an impredicative encoding in place of induction–recursion. This is a simplified303

and pared down adaptation of a proof of decidability of conversion for MLTT in Coq by304

Adjedj, Lennon-Bertrand, Maillard, Pédrot, and Pujet [2], which in turn uses a predicative305

encoding to adapt a proof of decidability of conversion for MLTT in Agda by Abel, Öhman,306

and Vezzosi [1] that uses induction–recursion.307

Below is a sketch of the inductive–recursive definition, which splits the logical relation
into two parts: an inductive predicate on types and their levels JAKk , and relation between
types and terms defined recursively on the predicate on the type, which we continue to write
as a ∈ JAKk .

J?Kk J⊥Kk

j < k JAKj ∀y. y ∈ JAKj −→ JB{y/x}Kk

JΠx :j A. BKk

A ⇒ B JBKk

JAKk
308

A ∈ J?Kk , JAKk f ∈ JΠx :j A. BKk , ∀y. y ∈ JAKj −→ f y ∈ JB{y/x}Kk309

a ∈ J⊥Kk , 0 a ∈ JAKk , a ∈ JBKk (where A ⇒ B)310

In the last inductive rule, in place of A ≡ B, we instead use parallel reduction A ⇒ B ,311

which is a reduction relation describing all visible reductions being performed in parallel312

from the inside out. This is justified by the following lemma, where A ⇒∗ B is the reflexive,313

transitive closure of A ⇒ B.314

4 agda/accessibility.agda:funext,funext'

https://github.com/plclub/StraTT
https://github.com/plclub/StraTT
https://github.com/plclub/StraTT
https://github.com/plclub/StraTT/tree/main/agda/accessibility.agda
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I Lemma 3 (Implementation of definitional equality).5 A ≡ B iff there exists some C such315

that A ⇒∗ C ∗⇐ B, which we write as A ⇔ B .316

Even now, this inductive–recursive definition is still not well formed. In particular, in the317

inductive rule for dependent functions, if A is ?, then by the recursive case for the universe,318

JyKj could again appear to the left of an implication. However, we know that j < k, which319

we can exploit to stratify the logical relation just as we stratify typing judgements. We do so320

by parametrizing each logical relation at level k by an abstract logical relation defined at all321

strictly lower levels j < k, then at the end tying the knot by instantiating them via well-322

founded induction on levels. This technique is adapted from an Agda model of a universe323

hierarchy by Kovács [24], which originates from McBride’s redundancy-free construction of a324

universe hierarchy [34, Section 6.3.1]. As the constructions are now fairly involved, we defer325

to the proof file6 for the full definitions, in particular U for the inductive predicate and el for326

the recursive relation. For the purposes of exposition, we continue to use the old notation.327

Because the logical relation only handles closed terms, we deal with contexts and simul-328

taneous substitutions σ separately by relating the two via yet another inductive–recursive329

definition, with a predicate on contexts JΓK and a relation between substitutions and contexts330

σ ∈ JΓK . Here, A{σ} denotes applying the substitution σ to the term A, and σ[x] denotes331

the term which σ substitutes for x.7332

J∅K

JΓK ∀σ. σ ∈ JΓK −→ JA{σ}Kk

JΓ, x :k AK

σ ∈ J∅K , 1333

σ ∈ JΓ, x :k AK , σ ∈ JΓK ∧ σ[x] ∈ JA{σ}Kk334

The most important lemmas that are needed are semantic cumulativity, semantic conver-335

sion, and backward preservation.336

I Lemma 4 (Cumulativity).8 If j < k and JAKj then JAKk, and if a ∈ JAKj then a ∈ JAKk.337

I Lemma 5 (Conversion).9 If A ⇔ B and JAKk then JBKk, and if a ∈ JAKk then a ∈ JBKk.338

I Lemma 6 (Backward preservation).10 If a ⇒∗ b and b ∈ JAKk then a ∈ JAKk.339

We can now prove the fundamental theorem of soundness of typing judgements with340

respect to the logical relation by induction on typing derivations, and consistency follows as341

a corollary.342

I Theorem 7 (Soundness).11 Suppose JΓK and σ ∈ JΓK. If Γ ` a :k A, then JA{σ}Kk and343

a{σ} ∈ JA{σ}Kk.344

I Corollary 8 (Consistency).12 There are no b, k such that ∅ ` b :k ⊥.345

4.1.1 The problem with floating functions346

This proof can’t be extended to the full StraTT. While floating nondependent function types
can be added to the logical relation directly as below, cumulativity will no longer hold.

JAKk JBKk

JA → BKk

f ∈ JA → BKk , ∀x. x ∈ JAKk −→ f x ∈ JBKk

5 agda/typing.agda:≈-⇔ 6 agda/semantics.agda 7 The mechanization uses de Bruijn indexing; various
index-shifting operations on substitutions are omitted for concision. 8 agda/semantics.agda:cumU,cumEl

9 agda/semantics.agda:⇔-U,⇔-el 10 agda/semantics.agda:⇒⋆-el 11 agda/soundness.agda:soundness
12 agda/consistency.agda:consistency

https://github.com/plclub/StraTT/tree/main/agda/typing.agda
https://github.com/plclub/StraTT/tree/main/agda/semantics.agda
https://github.com/plclub/StraTT/tree/main/agda/semantics.agda
https://github.com/plclub/StraTT/tree/main/agda/semantics.agda
https://github.com/plclub/StraTT/tree/main/agda/semantics.agda
https://github.com/plclub/StraTT/tree/main/agda/soundness.agda
https://github.com/plclub/StraTT/tree/main/agda/consistency.agda
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In particular, given f ∈ JA → BKj , when trying to show f ∈ JA → BKk, we have by347

definition ∀x. x ∈ JAKj −→ f x ∈ JBKj , a term x, and x ∈ JAKk, but no way to cast the latter348

into x ∈ JAKj to obtain f x ∈ JBKk as desired via the induction hypothesis, because such a349

cast would go downwards from a higher level k to a lower level j, rather than the other way350

around as provided by the induction hypothesis. Trying to incorporate the desired property351

into the relation, perhaps by defining it as ∀` ≥ k. ∀x. x ∈ JAK` −→ f x ∈ JBKk, would break352

the careful stratification of the logical relation that we’ve set up.353

4.2 Type safety of StraTT354

While we haven’t yet proven its consistency, we have proven type safety of the full StraTT.355

We use Coq to mechanize the syntactic metatheory of the typing, context formation, and356

signature formation judgements of StraTT, recalling that this covers all of stratified dependent357

functions, floating nondependent functions, and displaced constants. We also use Ott [39]358

along with the Coq tools LNgen [3] and Metalib [4] to represent syntax and judgements and359

to handle their locally-nameless representation in Coq. The proof scripts are available at360

https://github.com/plclub/StraTT under the coq/ directory.361

We begin with some basic common properties of type systems, namely weakening,362

substitution, and regularity lemmas, as well as a generalized displaceability lemma that’s363

simple to show. Next, we introduce a notion of restriction, which formalizes the idea that364

lower judgements can’t depend on higher ones, along with a notion of restricted floating,365

which is crucial for proving that floating function types are syntactically cumulative. Only366

then are we able to prove type safety.367

As we haven’t mechanized the syntactic metatheory of definitional equality ∆ ` A ≡ B, we368

state as axioms some standard, provable properties [5], which are orthogonal to stratification369

and only used in the final proof of type safety. The equivalent lemmas for subStraTT, however,370

have been mechanized in Agda13 as part of the consistency proof.371

I Axiom 9 (Function type injectivity).14 If ∆ ` A1 → B1 ≡ A2 → B2 then ∆ ` A1 ≡ A2 and372

∆ ` B1 ≡ B2; if Πx :j1 A1. B1 ≡ Πx :j2 A2. B2 then ∆ ` A1 ≡ A2, j1 = j2, and ∆ ` B1 ≡ B2.373

I Axiom 10 (Consistency of definitional equality).15 If ∆ ` A ≡ B then A and B do not have374

different head forms.375

4.2.1 Basic properties376

We can extend the ordering between levels j ≤ k to an ordering between contexts Γ1 ≤ Γ2 ;377

that is, if j ≤ k, then Γ, x :j A ≤ Γ, x :k A. At the same time, we also incorporate the idea378

of weakening into this relation, so Γ, x :k A ≤ Γ. Stronger contexts have higher levels and379

fewer assumptions. This ordering is contravariant in the typing judgement: we can lower the380

context without destroying typeability. This result subsumes a standard weakening lemma.381

I Lemma 11 (Weakening).16 If ∆; Γ ` a :k A and ∆ ` Γ′ and Γ′ ≤ Γ then ∆; Γ′ ` a :k A.382

The substitution lemma reflects the idea that an assumption x :k B is a hypothetical383

judgement. The variable x stands for any typing derivation of the appropriate type and level.384

I Lemma 12 (Substitution).17 If ∆; Γ1, x :j B, Γ2 ` a :k A and ∆; Γ1 ` b :j B then385

∆; Γ1, Γ2{b/x} ` a{b/x} :k A{b/x}.386

13 agda/reduction.agda 14 coq/axioms.v:DEquiv_Arrow_inj1,DEquiv_Arrow_inj2,DEquiv_Pi_inj1,DEquiv_Pi_inj2
15 coq/axioms.v:ineq_* 16 coq/ctx.v:DTyping_SubG 17 coq/subst.v:DTyping_subst

https://github.com/plclub/StraTT
https://github.com/plclub/StraTT/tree/main/agda/reduction.agda
https://github.com/plclub/StraTT/tree/main/coq/axioms.v
https://github.com/plclub/StraTT/tree/main/coq/axioms.v
https://github.com/plclub/StraTT/tree/main/coq/ctx.v
https://github.com/plclub/StraTT/tree/main/coq/subst.v
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Typing judgements themselves ensure the well-formedness of their components; in partic-387

ular, if a term type checks, then its type can be typed at the same level. Because our type388

system includes the non–syntax-directed rule T-Conv, the proof of this lemma depends on389

several inversion lemmas, omitted here.390

I Lemma 13 (Regularity).18 If ∆; Γ ` a :k A then ` ∆ and ∆ ` Γ and ∆; Γ ` A :k ?391

Generalizing displaceability in an empty context, derivations can be displaced wholesale392

by also incrementing contexts, written Γ+i , where (Γ, x :k A)+i = Γ+i , x :k+i A+i .393

I Lemma 14 (Displaceability).19 If ∆; Γ ` a :k A then ∆; Γ+j ` a+j :j+k A+j.394

If we displace a context, the result might not be stronger because displacement may395

modify the types in the assumptions. In other words, it is not the case that Γ ≤ Γ+k .396

4.3 Restriction397

The key idea of stratification is that a judgement at level k is only allowed to depend on398

judgements at the same or lower levels. One way to observe this property is through a399

form of strengthening result, which allows variables from higher levels to be removed from400

the context and contexts to be truncated at any level. Formally, we define the restriction401

operation, written dΓek , which filters out all assumptions from the context with level greater402

than k. A restricted context can be stronger since it could contain fewer assumptions.403

I Lemma 15 (Restriction).20 If ∆ ` Γ then ∆ ` dΓek for any k, and if ∆; Γ ` a :k A then404

∆; dΓek ` a :k A.405

I Lemma 16 (Restriction subsumption).21 Γ ≤ dΓek.406

4.3.1 Restricted floating407

Subsumption allows variables from one level to be made available to all higher levels using408

their current type. However, when we use this rule in a judgement, it doesn’t change the409

context that is used to check the term. This can be restrictive — we can only substitute410

their assumptions with lower level derivations.411

In some cases, we can raise the level of some assumptions in the context when we raise412

the level of the judgement without displacing their types or the rest of the context. For413

example, consider the derivable judgement f :j Πx :i A. B, x :i A ` f x :j B where i < j. We414

could derive the same judgement at a higher level k > j where we also raise the level of f to415

k. However, we can only raise the level of variables at the same level as the entire judgement.416

In our example, we can’t raise x from its lower level i because then it would be invalid as an417

argument to f .418

To prove this formally, we must work with judgements that don’t have any assumptions419

above the current level by using the restriction operation to discard them. Next, to raise420

certain levels, we introduce a floating operation on contexts ↑k
j Γ that raises assumptions in Γ421

at level j to a higher level k without displacing their types.422

I Lemma 17 (Restricted Floating).22 If ∆; Γ ` a :j A and j ≤ k then ∆; ↑k
j (dΓej) ` a :k A.423

The restricted floating lemma is required to prove cumulativity of judgements.424

I Lemma 18 (Cumulativity).23 If ∆; Γ ` a :j A and j ≤ k then ∆; Γ ` a :k A.425

18 coq/ctx.v:DCtx_DSig , coq/inversion.v:DTyping_DCtx , coq/ctx.v:DTyping_regularity
19 coq/ctx.v:DTyping_incr 20 coq/ctx.v:DSig_DCtx_DTyping_restriction

21 coq/restrict.v:SubG_restrict 22 coq/restrict.v:DTyping_float_restrict
23 coq/restrict.v:DTyping_cumul

https://github.com/plclub/StraTT/tree/main/coq/ctx.v
https://github.com/plclub/StraTT/tree/main/coq/inversion.v
https://github.com/plclub/StraTT/tree/main/coq/ctx.v
https://github.com/plclub/StraTT/tree/main/coq/ctx.v
https://github.com/plclub/StraTT/tree/main/coq/ctx.v
https://github.com/plclub/StraTT/tree/main/coq/restrict.v
https://github.com/plclub/StraTT/tree/main/coq/restrict.v
https://github.com/plclub/StraTT/tree/main/coq/restrict.v
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In the nondependent function case ∆; Γ ` λx. b :j A → B, where we want to derive the426

same judgement at level k ≥ j, we get by inversion the premise ∆; Γ, x :j A ` b :j B, while we427

need ∆; Γ, x :k A ` b :k B. Restricted floating and weakening allows us to raise the level of b428

together with the single assumption x from level j to level k.429

4.3.2 Type Safety430

We can now show that this language satisfies the preservation (i.e. subject reduction) and431

progress lemmas with respect to call-by-name βδ-reduction ∆ ` a  b ; the full set of432

reduction rules can be found in Appendix B. For progress, values are type formers and433

abstractions.434

I Lemma 19 (Preservation).24 If ∆; Γ ` a :k A and ∆ ` a  a′ then ∆; Γ ` a′ :k A.435

I Lemma 20 (Progress).25 If ∆;∅ ` a :k A then a is a value or ∆ ` a  b for some b.436

5 Prototype implementation437

We have implemented a prototype type checker, which can be found at https://github.com/438

plclub/StraTT under the impl/ directory, including a brief overview of the concrete syntax.26
439

This implementation is based on pi-forall [45], a simple bidirectional type checker for a440

dependently-typed programming language.441

For convenience, displacements and level annotations on dependent types can be omitted;442

the type checker then generates level metavariables in their stead. When checking a single443

global definition, constraints on level metavariables are collected, which form a set of integer444

inequalities on metavariables. An SMT solver checks that these inequalities are satisfiable by445

the naturals and finally provides a solution that minimizes the levels. Therefore, assuming446

the collected constraints are correct, if a single global definition has a solution, then a solution447

will always be found. However, we don’t know if this holds for a set of global definitions,448

because the solution for a prior definition might affect whether a later definition that uses it449

is solveable. Determining what makes a solution “better” or “more general” to maximize the450

number of global definitions that can be solved is part of future work.451

The implementation additionally features stratified datatypes, case expressions, and452

recursion, used to demonstrate the practicality of programming in StraTT. Restricting453

the datatypes to inductive types by checking strict positivity and termination of recursive454

functions is possible but orthogonal to stratification and thus out of scope for this work.455

The parameters and arguments of datatypes and their constructors respectively can be456

either floating (i.e. nondependent) or fixed (i.e. dependent), with their levels following rules457

analogous to those of nondependent and dependent functions. Additionally, datatypes and458

constructors can be displaced like constants, in that a displaced constructor only belongs to459

its datatype with the same displacement.460

We include with our implementation a small core library,27 and all the examples that461

appear in this paper have been checked by our implementation.28 Appendix C examines three462

particular datatypes in depth: decidable types, propositional equality, and dependent pairs.463

24 coq/typesafety.v:Reduce_Preservation 25 coq/typesafety.v:progress 26 impl/README.pi
27 impl/pi/README.pi 28 impl/pi/StraTT.pi

https://github.com/plclub/StraTT
https://github.com/plclub/StraTT
https://github.com/plclub/StraTT
https://github.com/plclub/StraTT/tree/main/coq/typesafety.v
https://github.com/plclub/StraTT/tree/main/coq/typesafety.v
https://github.com/plclub/StraTT/tree/main/impl/README.pi
https://github.com/plclub/StraTT/tree/main/impl/pi/README.pi
https://github.com/plclub/StraTT/tree/main/impl/pi/StraTT.pi
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6 Discussion464

6.1 On consistency465

The consistency of subStraTT tells us that the basic premise of using stratification in place466

of a universe hierarchy is sensible. However, it isn’t necessarily an incremental step towards467

consistency of the full StraTT, as we’ve seen that directly adding floating functions to the468

logical relation doesn’t work, and an entirely different approach may be needed after all.469

One possible direction is to take inspiration from the syntactic metatheory, especially the470

Restricted Floating lemma, which is required specifically to show cumulativity of floating471

functions. Since cumulativity is exactly where the naïve addition of floating functions to472

the logical relation fails, the key may be to formulate this lemma semantically. This might473

require modifying the logical relation to involve contexts and to relate open terms instead.474

Another possibility is based on the observation that due to cumulativity, floating functions475

appear to be parametric in its stratification level, at least starting from the smallest level at476

which it can be well typed. This suggests that some sort of relational model may help to477

interpret levels parametrically.478

Nevertheless, we strongly believe that StraTT is indeed consistent. The Restriction lemma479

in particular intuitively tells us that nothing at higher levels could possibly be smuggled480

into a lower level to violate stratification. As a further confidence check, we have verified481

that three type-theoretic paradoxes possible in an ordinary type theory with type-in-type482

do not type check in our implementation. These paradoxes are Burali-Forti’s paradox [8],483

Russell’s paradox [38], and Hurkens’ paradox [23], which all end up reaching a point where a484

higher-level term needs to fit into a lower-level position to proceed any further — exactly485

what stratification is designed to prevent. Appendix D examines these paradoxes in depth.486

6.2 On useability487

Useability comes down to the balance between practicality and expressivity. On the practi-488

cality side, our implementation demonstrates that if a definition is well typed, then its levels489

and displacements can be completely omitted and inferred, a workflow comparable to Coq490

or Lean. Additionally, since constants are displaced by only a single displacement, StraTT491

doesn’t exhibit the same kind of exponential blowup in levels and type checking time that can492

occur when using universe-polymorphic definitions in Coq or Lean, which need to abstract493

over and instantiate over all implicit levels involved. This behaviour is demonstrated by the494

concrete, though artificial, examples in Appendix E, whose corresponding StraTT definition495

checks just fine.29 However, if a definition is not well typed, debugging it may involve wading496

through constraints between generated level metavariables in situations normally having497

nothing to do with universe levels, since stratification now involves levels everywhere, in498

particular when using dependent function types.499

On the expressivity side, the displacement system of StraTT falls somewhere between500

level monomorphism and prenex level polymorphism; in some scenarios, it works just as501

well as polymorphism. For instance, to type check Hurkens’ paradox as far as StraTT502

can, the Coq formulation of the paradox without type-in-type requires turning on universe503

polymorphism, and the Agda formulation of the paradox without type-in-type requires504

definitions polymorphic over at least three universe levels. In general, displacement seems505

particularly suited for our stratified system, since level annotations only appear on dependent506

29 impl/pi/Blowup.pi

https://github.com/plclub/StraTT/tree/main/impl/pi/Blowup.pi
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function domains, not on universes. For example, the type ΠX :0 ?. (X → ?) → ? only has one507

level, while the corresponding most general Agda type (X : Set ℓ₁) → (X → Set ℓ₂) → Set ℓ₃508

has three and would fare poorly with displacement.509

However, in other scenarios, the expressivity of level polymorphism over multiple level510

variables is truly needed. For instance, merely having a type constructor with both a511

dependent domain and a nondependent domain interacts poorly with cumulativity. Suppose512

we had some type constructor T :1 Πx :0 X . Y → ? and a function over elements of this type513

f :1 Πx :0 X . Πy :0 Y . T x y → Z . By cumulativity, if y has level 2, T x y is still well typed by514

cumulativity at level 2, but f can no longer be applied to it, since the level of y is now too515

high. We would like the second argument of f to float along with T, but this isn’t possible516

since it’s depended upon. Having the level of the second argument be polymorphic (subject517

to the expected constraints) would resolve this issue.518

6.3 Related work519

StraTT is directly inspired from Leivant’s stratified polymorphism [26, 27, 14], which developed520

from Statman’s ramified polymorphic typed λ-calculus [41]. Stratified System F, a slight521

modification of the original system, has since been used to demonstrate a normalization522

proof technique using hereditary substitution [18], which in turn has been mechanized in523

Coq as a case study for the Equations package [29]. More recently, an interpreter of an524

intrinsically-typed Stratified System F has been mechanized in Agda by Thiemann and525

Weidner [43], where stratification levels are interpreted as Agda’s universe levels. Similarly,526

Hubers and Morris’ Stratified Rω, a stratified System Fω with row types, has been mechanized527

in Agda as well [22]. Meanwhile, our system of level displacement comes from McBride’s528

crude-but-effective stratification [33, 32], specializing the displacement algebra (in the sense529

of Favonia, Angiuli, and Mullanix [21]) to the naturals.530

7 Conclusion531

In this work, we have introduced Stratified Type Theory, a departure from a decades-old532

tradition of universe hierarchies without, we believe, succumbing to the threat of logical533

inconsistency. By stratifying dependent function types, we obstruct the usual avenues534

by which paradoxes manifest their inconsistencies; and by separately introducing floating535

nondependent function types, we recover some of the expressivity lost under the strict rule of536

stratification. Although proving logical consistency for the full StraTT remains future work,537

we have proven it for the subsystem subStraTT, and we have provided supporting evidence538

by showing how well-known type-theoretic paradoxes fail.539

Towards demonstrating that StraTT isn’t a mere theoretical exercise and, if consistent, is a540

viable basis for theorem proving and dependently-typed programming, we have implemented541

a prototype type checker for the language augmented with datatypes, along with a small core542

library. The implementation also features inference for level annotations and displacements,543

allowing the user to omit them entirely. We leave formally ensuring that our rules for544

datatypes don’t violate existing metatheoretical properties as future work as well.545

Given the various useability tradeoffs discussed, as well as the incomplete status of its546

consistency, we don’t see any particularly compelling reason for existing proof assistants547

to adopt a system based on StraTT, but we don’t anticipate any particular showstoppers,548

either, and believe it suitable for further improvement and iteration. Ultimately, we hope549

that StraTT demonstrates the feasibility of a renewed alternative to how type universes are550

handled, and opens up fresh avenues in the design space of type theories for proof assistants.551
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A Well-formedness and equality668

` ∆ (Signature formation)

D-Empty

` ∅

D-Cons
` ∆ ∆;∅ ` A :k ?

∆;∅ ` a :k A
x 6∈ dom ∆

` ∆, x :k A := a

∆ ` Γ (Context formation)

DG-Empty
` ∆

∆ ` ∅

DG-Cons
∆ ` Γ ∆; Γ ` A :k ?

x 6∈ dom Γ
x 6∈ dom ∆

∆ ` Γ, x :k A

∆ ` a ≡ b (Definitional equality)

DE-Refl

∆ ` a ≡ a

DE-Sym
∆ ` b ≡ a
∆ ` a ≡ b

DE-Trans
∆ ` a ≡ b ∆ ` b ≡ c

∆ ` a ≡ c

DE-Beta

∆ ` (λx. b) a ≡ b{a/x}

DE-Delta
x :kA := a ∈ ∆
∆ ` x i ≡ a+i

DE-Arrow
∆ ` A ≡ A′

∆ ` B ≡ B′

∆ ` A → B ≡ A′ → B′

DE-Pi
∆ ` A ≡ A′

∆ ` B ≡ B′

∆ ` Πx :k A. B ≡ Πx :k A′. B′

DE-Abs
∆ ` b ≡ b′

∆ ` λx. b ≡ λx. b′

DE-App
∆ ` a ≡ a′ ∆ ` b ≡ b′

∆ ` b a ≡ b′ a′

DE-Absurd
∆ ` b ≡ b′

∆ ` absurd(b) ≡ absurd(b′)

Figure 3 Signature formation, context formation, and definitional equality rules
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B Reduction669

∆ ` a  b (Single-step reduction)

R-Beta

∆ ` (λx. b) a  b{a/x}

R-Delta
x :kA := a ∈ ∆
∆ ` x i  a+i

R-App
∆ ` b  b′

∆ ` b a  b′ a

R-Absurd
∆ ` b  b′

∆ ` absurd(b) absurd(b′)

∆ ` a  ∗ b (Multi-step reduction)

W-Refl

∆ ` a  ∗ a

W-Trans
∆ ` a  b
∆ ` b  ∗ c
∆ ` a  ∗ c

Figure 4 Call-by-name reduction

C Datatypes670

C.1 Decidable types671

Revisiting an example from Section 3, we can define Dec as a datatype.672

data Dec (X : ?) :0 ? where673

Yes :0 X → Dec X674

No :0 neg X → Dec X675

The lack of annotation on the parameter indicates that it’s a floating domain, so that676

λX . Dec X can be assigned type ? → ? at level 0. Datatypes and their constructors, like677

variables and constants, are cumulative, so the aforementioned type assignment is valid at678

any level above 0 as well. When destructing a datatype, the constructor arguments of each679

branch are typed such that the constructor would have the same level as the level of the680

scrutinee. Consider the following proof that decidability of a type implies its double negation681

elimination, which requires inspecting the decision.682

decDNE :1 ΠX :0 ?. Dec X → neg (neg X) → X683

decDNE X dec nn := case dec of684

Yes y ⇒ y685

No x ⇒ absurd(nn x)686

By the level annotation on the function, we know that dec and nn both have level 1.687

Then in the branches, the patterns Yes y and No x must also be typed at level 1, so that y688

has type X and x has type neg X both at level 1.689
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C.2 Propositional equality690

Datatypes and their constructors, like constants, can be displaced as well, uniformly raising691

the levels of their types. We again revisit an example from Section 3 and now define a692

propositional equality as a datatype with a single reflexivity constructor.693

data Eq (X :0 ?) :1 X → X → ? where694

Refl :1 Πx :0 X . Eq X x x695

This time, the parameter has a level annotation indicating that it’s fixed at 0, while696

its indices are floating. Displacing Eq by 1 would then raise the fixed parameter level to 1,697

while the levels of Eq1 itself and its floating indices always match but can be 2 or higher by698

cumulativity. Its sole constructor would be Refl1 containing a single argument of type X at699

level 1. Displacement is needed to state and prove propositions about equalities between700

equalities, such as the uniqueness of equality proofs.30
701

UIP :2 ΠX :0 ?. Πx :0 X . Πp :1 Eq X x x. Eq1 (Eq X x x) p (Refl x)702

UIP X x p := case p of Refl x ⇒ Refl1 (Refl x)703

C.3 Dependent pairs704

Because there are two different function types, there are also two different ways to define705

dependent pairs. Using a floating function type for the second component’s type results in706

pairs whose first and second projections can be defined as usual, while using the stratified707

dependent function type results in pairs whose second projection can’t be defined in terms of708

the first. We first take a look at the former.709

data NPair (X :0 ?) (P : X → ?) :1 ? where710

MkPair :1 Πx :0 X . P x → NPair X P711

nfst :1 ΠX :0 ?. ΠP :0 X → ?. NPair X P → X712

nfst X P p := case p of MkPair x y ⇒ x713

nsnd :2 ΠX :0 ?. ΠP :0 X → ?. Πp :1 NPair X P. P (nfst X P p)714

nsnd X P p := case p of MkPair x y ⇒ y715

Due to stratification, the projections need to be defined at level 1 and 2 respectively to716

accommodate dependently quantifying over the parameters at level 0 and the pair at level 1.717

Even so, the second projection is well typed, since P can be used at level 2 by subsumption718

to be applied to the first projection at level 2 also by subsumption in the return type of the719

second projection.720

As the two function types are distinct, we do need both varieties of dependent pairs. In721

particular, with the above pairs alone, we aren’t able to type check a universe of propositions722

NPair ? isProp, as the predicate has type ΠX :0 ?. ? at level 1.723

data DPair (X :0 ?) (P : Πx :0 X . ?) :1 ? where724

MkPair :1 Πx :0 X . P x → DPair X P725

dfst :2 ΠX :0 ?. ΠP :1 (Πx :0 X . ?). DPair X P → X726

30 The provability of this principle, also known as UIP [20], is more a consequence of the quirks of
unification in pi-forall than an intentional intensional design.
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dfst X P p := case p of MkPair x y ⇒ x727

dsnd :2 ΠX :0 ?. ΠP :1 (Πx :0 X . ?). Πp :1 DPair X P.728

case p of MkPair x y ⇒ P x729

dsnd X P p := case p of MkPair x y ⇒ y730

In the second variant of dependent pairs where P is a stratified dependent function type,731

the domain of P is fixed to level 0, so in the type in dsnd, it can’t be applied to the first732

projection, but it can still be applied to the first component by matching on the pair. Now733

we’re able to type check DPair ? isProp.734

In both cases, the first component has a fixed level, while the second component is735

floating, so using a predicate at a higher level results in a pair type at a higher level by736

subsumption. Consider the predicate isSet, which has type ΠX :0 ?. ? at level 2: the universe737

of sets DPair ? isSet is also well typed at level 2.738

Unfortunately, the first projection dfst can no longer be used on an element of this pair,739

since the predicate is now at level 2, nor can its displacement dfst1, since that would displace740

the level of the first component as well. Without proper level polymorphism, which would741

allow keeping the first argument’s level fixed while setting the second argument’s level to 2,742

we’re forced to write a whole new first projection function.743

In general, this limitation occurs whenever a datatype contains both dependent and744

nondependent parameters. Nevertheless, in the case of the pair type, the flexibility of a745

nondependent second component type is still preferable to a dependent one that fixes its level,746

since there would need to be entirely separate datatype definitions for different combinations747

of first and second component levels, i.e. one with levels 0 and 1 (as in the case of isProp),748

one with levels 0 and 2 (as in the case of isSet), and so on.749

D Paradoxes750

D.1 Burali-Forti’s paradox751

Burali-Forti’s paradox [8] in set theory concerns the simultaneous well-foundedness and752

non–well-foundedness of an ordinal. In type theory, we instead consider a particular datatype753

U due to Coquand [11],31,32 along with a well-foundedness predicate for U.754

data U :1 ? where755

MkU :1 ΠX :0 ?. (X → U) → U756

data WF :2 U → ? where757

MkWF :2 ΠX :0 ?. Πf :1 X → U. (Πx :1 X . WF (f x)) → WF (MkU X f )758

Note that both of these definitions are strictly positive, so we aren’t using any tricks759

relying on negative datatypes. It’s easy to show that all U are well founded.760

wf :2 Πu :1 U. WF u761

wf u := case u of762

MkU X f ⇒ MkWF X f (λx. wf (f x))763

31 Our thanks to Stephen Dolan for detailing to us this example. 32 impl/pi/WFU.pi

https://github.com/plclub/StraTT/tree/main/impl/pi/WFU.pi


XX:22 Stratified Type Theory

The usual paradox, with type-in-type and without stratification, constructs a U that is764

provably not well founded.765

loop :1 U766

loop := MkU U (λu. u)767

nwfLoop :2 WF loop → ⊥768

nwfLoop wfLoop := case wfLoop of769

MkWF X f h ⇒ nwfLoop (h loop)770

In the branch of nwfLoop, by pattern matching on the type of the scrutinee, X is bound to771

U and f to λu. u, so h loop correctly has type WF loop. Note that this definition would also772

pass the usual structural termination check, since the recursive call is done on a subargument773

from h. Then nwfLoop (wf loop) is an inhabitant of the empty type.774

With stratification, U with level 1 is too large to fit into the type argument of MkU, which775

demands level 0, so loop can’t be constructed in the first place. This is also why the level of776

a datatype can’t be strictly lower than that of its constructors, despite such a design not777

violating the regularity lemma for constructors.778

D.2 Russell’s paradox779

The U above was originally used by Coquand [11] to express a variant of Russell’s para-780

dox [38].33,34 First, a U is said to be regular if it’s provably inequal to its subarguments; this781

represents a set which doesn’t contain itself.782

regular :1 U → ?783

regular u := case u of784

MkU X f ⇒ Πx :0 X . (f x = MkU X f ) → ⊥785

The trick is to define a U that is both regular and nonregular. Normally, with type-in-type,786

this would be one that represents the set of all regular sets.787

R :3 U2
788

R := MkU2 (NPair1 U regular) (nfst1 U regular)789

Stratification once again prevents R from type checking, since the pair projection returns790

a U and not a U2. The type contained in the pair can’t be displaced to U2 either, since that791

would make the pair’s level too large to fit inside MkU2.792

D.3 Hurkens’ paradox793

Although we’ve seen that stratification thwarts the paradoxes above, they leverage the794

properties of datatypes and recursive functions, which we haven’t formalized. Here, we’ll795

turn to the failure of Hurkens’ paradox [23] as further evidence of consistency, which in796

contrast can be formulated in pure StraTT without datatypes. Below is the paradox in Coq797

without universe checking.798

33 An Agda implementation can be found at https://github.com/agda/agda/blob/master/test/Succeed/Russell.agda [16].
34 impl/pi/Russell.pi

https://github.com/agda/agda/blob/master/test/Succeed/Russell.agda
https://github.com/plclub/StraTT/tree/main/impl/pi/Russell.pi
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Require Import Coq.Unicode.Utf8_core.

Unset Universe Checking.

Definition P (X : Type) : Type := X → Type.

Definition U : Type :=

∀ (X : Type), (P (P X) → X) → P (P X).

Definition tau (t : P (P U)) : U :=

λ X f p, t (λ s, p (f (s X f))).

Definition sig (s : U) : P (P U) := s U tau.

Definition Delta (y : U) : Type :=

(∀ (p : P U), sig y p → p (tau (sig y))) → False.

Definition Omega : U :=

tau (λ p, ∀ (x : U), sig x p → p x).

Definition M (x : U) (s : sig x Delta) : Delta x :=

λ d, d Delta s (λ p, d (λ y, p (tau (sig y)))).

Definition D := ∀ p, (∀ x, sig x p → p x) → p Omega.

Definition R : D :=

λ p d, d Omega (λ y, d (tau (sig y))).

Definition L (d : D) : False :=

d Delta M (λ p, d (λ y, p (tau (sig y)))).

Definition false : False := L R.

If we replace unsetting universe checking with799

Set Universe Polymorphism.

then the definitions check up to M. Similarly, in Agda, we can get the paradox to check up to800

M by using explicit universe polymorphism.801

{-# OPTIONS --cumulativity #-}

open import Agda.Primitive

data ⊥ : Set where

U : ∀ ℓ ℓ₁ ℓ₂ → Set (lsuc (ℓ ⊔ ℓ₁ ⊔ ℓ₂))

U ℓ ℓ₁ ℓ₂ = ∀ (X : Set ℓ) → (((X → Set ℓ₁) → Set ℓ₂) → X) → ((X → Set ℓ₁) → Set ℓ₂)

τ : ∀ ℓ₁ ℓ₂ → ((U ℓ₁ ℓ₁ ℓ₂ → Set ℓ₁) → Set ℓ₂) → U ℓ₁ ℓ₁ ℓ₂

τ ℓ₁ ℓ₂ t = λ X f p → t (λ x → p (f (x X f)))

σ : ∀ ℓ₁ ℓ₂ → U (lsuc (ℓ₁ ⊔ ℓ₂)) ℓ₁ ℓ₂ → (U ℓ₁ ℓ₁ ℓ₂ → Set ℓ₁) → Set ℓ₂

σ ℓ₁ ℓ₂ s = s (U ℓ₁ ℓ₁ ℓ₂) (τ ℓ₁ ℓ₂)

Δ : ∀ {ℓ₁ ℓ₂} → U (lsuc (ℓ₁ ⊔ ℓ₂)) ℓ₁ ℓ₂ → Set (lsuc (ℓ₁ ⊔ ℓ₂))

Δ {ℓ₁} {ℓ₂} y = (∀ p → σ ℓ₁ ℓ₂ y p → p (τ ℓ₁ ℓ₂ (σ ℓ₁ ℓ₂ y))) → ⊥

Ω : ∀ {ℓ} → U ℓ ℓ (lsuc (lsuc ℓ))

Ω {ℓ} = τ ℓ (lsuc (lsuc ℓ)) (λ p → (∀ x → σ ℓ ℓ x p → p x))

M : ∀ {ℓ} x → σ (lsuc ℓ) ℓ x (Δ {ℓ} {ℓ}) → Δ {lsuc ℓ} {ℓ} x

M {ℓ} _ 𝟚 𝟛 = 𝟛 Δ 𝟚 (λ p → 𝟛 (λ y → p (τ ℓ ℓ (σ ℓ ℓ y))))
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R : ∀ {ℓ} p → (∀ x → σ ℓ (lsuc (lsuc ℓ)) x p → p x) → p Ω

R {ℓ} _ 𝟙 = {! 𝟙 (Ω {ℓ}) (λ x → 𝟙 (τ ℓ ℓ (σ ℓ ℓ x))) !}

-- Need Ω : U (lsuc (lsuc (lsuc ℓ))) ℓ (lsuc (lsuc ℓ))

-- Have Ω : U ℓ ℓ (lsuc (lsuc ℓ))

L : ∀ {ℓ} → (∀ p → (∀ x → σ ℓ (lsuc (lsuc ℓ)) x p → p x) → p Ω) → ⊥

L {ℓ} 𝟘 = {! 𝟘 (Δ {ℓ} {ℓ}) M (λ p → 𝟘 (λ y → p (τ ℓ ℓ ℓ (σ ℓ ℓ ℓ y)))) !}

-- Need Δ : U ℓ ℓ (lsuc (lsuc ℓ)) → Set ℓ

-- Have Δ : U (lsuc ℓ) ℓ ℓ → Set (lsuc ℓ)

false : ⊥

false = L {lzero} (R {lzero})

The corresponding StraTT code, too, checks up to M, as verified in the implementation.35
802

Displacement is sufficient to handle situations in which polymorphism was needed.803

P :0 ? → ?804

P X := X → ?805

U :1 ?806

U := ΠX :0 ?. (P (P X) → X) → P (P X)807

tau :1 P (P U) → U808

tau t X f p := t (λs. p (f (s X f )))809

sig :2 U1 → P (P U)810

sig s := s U tau811

Delta :2 P U1
812

Delta y := (Πp :1 P U. sig y p → p (tau (sig y))) → ⊥813

Omega :3 U814

Omega := tau (λp. Πx :2 U1. sig x p → p (λX . x X))815

M :4 Πx :3 U2. sig1 x Delta → Delta1 x816

M x s d := d Delta s (λp. d (λy. p (tau (sig y))))817

D :3 ?818

D := Πp :1 P U. (Πx :1 U. sig x p → p x) → p Omega819

The next definition D doesn’t type check, since sig takes a displaced U1 and not a U. The820

type of x can’t be displaced to fix this either, since p takes an undisplaced U and not a U1.821

Being stuck trying to equate two different levels is reassuring, as conflating different universe822

levels is how we expect a paradox that exploits type-in-type to operate.823

D.4 Reynolds’ paradox824

Our final example concerns the inconsistency of inductives which are positive but not825

strictly so together with an impredicative universe, as described by Coquand and Paulin-826

Mohring [13].36,37 We consider such a nonstrictly-positive datatype A0.827

35 impl/pi/Hurkens.pi (no annotations), impl/pi/HurkensAnnot.pi (all annotations) 36 A Coq imple-
mentation has been made by Sjöberg [40]. 37 impl/pi/Reynolds.pi

https://github.com/plclub/StraTT/tree/main/impl/pi/Hurkens.pi
https://github.com/plclub/StraTT/tree/main/impl/pi/HurkensAnnot.pi
https://github.com/plclub/StraTT/tree/main/impl/pi/Reynolds.pi
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data A0 :0 ? where828

A0 :0 ((A0 → ?) → ?) → A0829

A0 has one constructor whose only argument has type (A0 → ?) → ?. Note that we don’t830

need to use its induction principle (i.e. recursion), merely the fact that there’s an injection831

from the latter type to the former, and so can be seen as a type-theoretic formulation of832

Reynolds’ paradox [37]; this has also been detailed by Coquand [12].833

We can define an injection f from A0 → ? to A0. Injectivity of both MkA0 and f are834

omitted below; they are a crucial part of the paradox, but are orthogonal to what fails to835

type check.836

f :0 (A0 → ?) → A0837

f x := MkA0 (λz. z = x)838

Now we are in a position to define a property P similar to regularity from Russell’s839

paradox above, and an element of A0 that simultaneously does and doesn’t satisfy P.840

P :1 A0 → ?841

P x := NPair (A0 → ?) (λP. Pair (x = f P) (P x → ⊥))842

a0 :1 A0843

a0 := f P844

The details are omitted, but the where the paradox fails to type check is in trying to845

construct an element of P a0 using P itself as the first element of the pair. Its level is 1, which846

is too high for the dependent pair, which asks for a first component at level 0; displacing847

NPair will raise the level of P, which will again make it still too high.848

Impredicativity is what normally makes this paradox go through, disallowing nonstrictly-849

positive inductives for consistency. As StraTT is predicative, this may permit us to have850

nonstrictly-positive datatypes consistently; precedents include Blanqui’s Calculus of Algebraic851

Constructions [6, Section 7].852

E Exponential universe polymorphism853

E.1 Coq854

Set Universe Polymorphism.

Time Definition T1 : Type := Type -> Type -> Type -> Type -> Type -> Type.

Time Definition T2 : Type := T1 -> T1 -> T1 -> T1 -> T1 -> T1.

Time Definition T3 : Type := T2 -> T2 -> T2 -> T2 -> T2 -> T2.

Time Definition T4 : Type := T3 -> T3 -> T3 -> T3 -> T3 -> T3.

Time Definition T5 : Type := T4 -> T4 -> T4 -> T4 -> T4 -> T4.

Time Definition T6 : Type := T5 -> T5 -> T5 -> T5 -> T5 -> T5.

Time Definition T7 : Type := T6 -> T6 -> T6 -> T6 -> T6 -> T6.

Time Definition T8 : Type := T7 -> T7 -> T7 -> T7 -> T7 -> T7.

E.2 Lean855

def T1 : Type _ := Type _ → Type _ → Type _ → Type _ → Type _ → Type _

def T2 : Type _ := T1 → T1 → T1 → T1 → T1 → T1
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def T3 : Type _ := T2 → T2 → T2 → T2 → T2 → T2

def T4 : Type _ := T3 → T3 → T3 → T3 → T3 → T3

def T5 : Type _ := T4 → T4 → T4 → T4 → T4 → T4

def T6 : Type _ := T5 → T5 → T5 → T5 → T5 → T5

def T7 : Type _ := T6 → T6 → T6 → T6 → T6 → T6

def T8 : Type _ := T7 → T7 → T7 → T7 → T7 → T7
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