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Abstract. A hierarchy of type universes is a rudimentary ingredient
in the type theories of many proof assistants to prevent the logical in-
consistency resulting from combining dependent functions and the type-
in-type axiom. In this work, we argue that a universe hierarchy is not
the only option for universes in type theory. Taking inspiration from
Leivant’s Stratified System F, we introduce Stratified Type Theory
(StraTT), where rather than stratifying universes by levels, we stratify
typing judgements and restrict the domain of dependent functions to
strictly lower levels. Even with type-in-type, this restriction suffices to
enforce consistency.
In StraTT, we consider a number of extensions beyond just stratified de-
pendent functions. First, the subsystem subStraTT employs McBride’s
crude-but-effective stratification (also known as displacement) as a sim-
ple form of level polymorphism where global definitions with concrete
levels can be displaced uniformly to any higher level. Second, to recover
some expressivity lost due to the restriction on dependent function do-
mains, the full StraTT includes a separate nondependent function type
with a floating domain whose level matches that of the overall function
type. Finally, we have implemented a prototype type checker for StraTT
extended with datatypes and inference for level and displacement anno-
tations, along with a small core library.
We have proven subStraTT to be consistent and StraTT to be type safe,
but consistency of the full StraTT remains an open problem, largely
due to the interaction between floating functions and cumulativity of
judgements. Nevertheless, we believe StraTT to be consistent, and as
evidence have verified the ill-typedness of some well-known type-theoretic
paradoxes using our implementation.
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1 Introduction

Every term in a dependent type theory has a type, including types such as Nat.
Types are classified by the type universes to which they belong, and as type
universes are themselves types, they must each belong to some type universe. In
Martin-Löf Type Theory [30], these universes form a hierarchy: universe ?k has
type ?k+1 thus preventing any universe from classifying itself. Otherwise, the
system would be inconsistent.
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F-poly
Γ, x type ` B type
Γ ` ∀x.B type

SF-poly
j < k

Γ, x type j ` B type k

Γ ` ∀xj . B type k

SF-fun
Γ ` A type k
Γ ` B type k

Γ ` A → B type k

Fig. 1. Select rules from (Stratified) System F

Many contemporary proof assistants, such as Coq [10], Agda [35], Lean [34],
F* [42], and Arend [9], include universe hierarchies. To make these systems easier
to use, they often automatically infer the levels of each universe, so programmers
can write, for instance, Type instead of Type 3. They also include forms of level
polymorphism, so that definitions can be reused at multiple universe levels.
However, supporting such generality means that the proof assistant must handle
level variable constraints, level expressions, or both. As a result, programming
with and especially debugging errors involving universe levels can be painful.

So we ask: can type universes and reusability coexist without resorting to
level polymorphism?

In this work, we design Stratified Type Theory (StraTT), a new approach
for type universes, and evaluate mechanisms for reusability that don’t include
level polymorphism. The key idea of our design is that we do not stratify uni-
verses into a hierarchy; instead, we stratify typing judgements themselves by
levels. This approach is inspired by Leivant’s Stratified System F [25], a pred-
icative variant of System F [18,36].

Consider the formation rule F-poly for System F’s type polymorphism in
Figure 1. The quantification is said to be impredicative because it quantifies over
all types including itself. In contrast, the formation rule SF-poly for Stratified
System F disallows impredicativity by restricting polymorphic quantification to
only types that are well formed at strictly lower stratification levels. The type
well-formedness judgement tracks the stratification level with an index k.

To extend stratified polymorphism to dependent types, there are two ways
to read this judgement form. We could interpret Γ ` A type k as a type A
living in some stratified type universe ?k, which would correspond to a usual
predicative type theory. Alternatively, we could continue to interpret the level k
as a property of the judgement and annotate the dependent typing judgement
form as Γ ` a :k A. Analogously to stratified polymorphic types ∀xj . B, we
introduce stratified dependent function types Πx :j A.B. They similarly quantify
over arguments at the annotated level j, which must be strictly lower than the
overall level of the type. This allows us to remove the level annotation from
universes, so we have Γ ` ? :k ? for any k.

Moving levels off of universes and onto judgements and function domains
opens up the opportunity to really take advantage of McBride’s crude-but-effec-
tive stratification [32]. Following Favonia, Angiuli, and Mullanix [20], we refer
to this as displacement to prevent confusion. Given some signature ∆ of global
definitions, we are permitted to use any definition with all of its concrete levels
uniformly displaced upwards. Displacement is less effective than level polymor-
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phism in MLTT for types that involve multiple universes, such as ?0 → ?3, since
we’d still be stuck with the relative difference of 3 between the two universes.
With stratified functions, this type would look like ΠX :0 ?. ?, with only a single
level annotation to displace.

However, we find that even with displacement, stratifying all function types
is too restrictive and rules out terms that are otherwise typeable in MLTT even
without level polymorphism. Going back to Stratified System F, we observe
that with respect to the levels, ordinary function types are more flexible than
polymorphic function types. Their formation rule SF-fun in Figure 1 allows the
level of the domain type to be equal to the overall level of the function type. It
is this flexibility we’re missing that would recover some lost expressivity, so we
add an analogous separate function type that is nondependent but has no fixed
domain level. If the overall level of the nondependent function type is raised, we
say that the level of the domain floats to the same level.

We divide our design into two parts. The subsystem subStraTT features only
stratified dependent functions and displacement, and the full system StraTT
adds floating nondependent functions. We have proven in Agda the logical con-
sistency of the former. Even with type-in-type, the stratification restriction on
the domains of dependent functions prevents the kind of self-referential trickery
that is needed for the usual paradoxes.

We conjecture, but have not proven, the consistency of the full StraTT. Float-
ing functions permit covariant behaviour of the domain with respect to levels,
and our existing Agda proof doesn’t extend to this new feature. That doesn’t
mean that the system is inconsistent: it may be sufficiently different from usual
predicative type theories to require an entirely different approach or an alterna-
tive foundation outside of Agda. Indeed, our experience with the system provides
evidence that consistency does hold. We have found it impossible to use StraTT
to encode some well-known type-theoretic paradoxes. We also have verified its
syntactic metatheory, giving us further insight into its design.

The contributions of our paper are as follows:

• A subsystem subStraTT, featuring only stratified dependent functions and
displacement, which is then extended to the full StraTT with floating nonde-
pendent functions. ↪→ Section 2

• Examples to demonstrate the expressivity of StraTT and especially to moti-
vate floating functions. ↪→ Section 3

• Two major metatheorems: logical consistency for subStraTT, which is mech-
anized in Agda, and type safety for StraTT, which is mechanized in Coq.
Consistency for the full StraTT remains an open problem. ↪→ Section 4

• A prototype implementation of a type checker, which extends StraTT to
include datatypes to demonstrate the effectiveness of stratification and dis-
placement in practical dependently-typed programming. ↪→ Section 5

We discuss potential avenues for proving consistency of the full StraTT and
compare the useability of its design to existing proof assistants in terms of work-
ing with universe levels in Section 6 and conclude in Section 7. Our Agda and
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Coq mechanizations along with the prototype implementation are available at
https://github.com/plclub/StraTT. Where lemmas and theorems are first intro-
duced, we include a footnote indicating the corresponding source file and lemma
name in the development.

2 Stratified Type Theory

In this section, we present Stratified Type Theory in two parts. First is the sub-
system subStraTT, which contains the two core features of stratified dependent
function types and global definitions with level displacement. We then extend
it to the full StraTT by adding floating nondependent function types. As the
system is fairly small with few parts, we delay illustrative examples to Section 3,
and begin with the formal description.

2.1 The subsystem subStraTT

The subsystem subStraTT is a cumulative, extrinsic type theory with types à la
Russell, a single type universe, dependent functions, an empty type, and global
definitions. The most significant difference between subStraTT and other type
theories with these features is the annotation of the typing judgement with a level
in place of universes in a hierarchy. We use the naturals and their usual strict
order and addition operation for our levels, but they should be generalizable to
any displacement algebra [20]. The syntax for terms, contexts Γ, and signatures
∆ is given below, with x, y, z for variable and constant names and i, j, k for levels.

a, b, c,A,B,C ::= ? | x | xi | Πx :j A.B | λx. b | b a | ⊥ | absurd(b)
Γ ::= ∅ | x :k A
∆ ::= ∅ | x :k A := a

A context consists of declarations x :k A of variables x of type A at level k;
variables represent locations where an entire typing derivation may be substi-
tuted into the term, so they also need level annotations. A signature consists of
global definitions x :k A := a of constants x of type A definitionally equal to a at
level k; they represent complete typing derivations that will eventually be sub-
stituted into the term. The typing judgement ∆;Γ ` a :k A , whose derivation
rules are given in Figure 2, states that the term a is well typed at level k with
type A under the context Γ and signature ∆.

Because stratified judgements replace stratified universes, the type of the type
universe ? is itself at any level in rule DT-Type. Stratification is enforced in
dependent function types in rule DT-Pi: the domain type must be well typed at a
strictly smaller level relative to the codomain type and the overall function type.
Similarly, in rule DT-AbsTy, the body of a dependent function is well typed
when its argument and its type are well typed at a strictly smaller level, and by
rule DT-AppTy, a dependent function can only be applied to an argument at
the strictly smaller domain level.

https://github.com/plclub/StraTT
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∆;Γ ` a :k A (Typing)

DT-Type
∆ ` Γ

∆;Γ ` ? :k ?

DT-Pi
∆;Γ ` A :j ?

∆;Γ, x :j A ` B :k ?
j < k

∆;Γ ` Πx :j A.B :k ?

DT-AbsTy
∆;Γ ` A :j ?

∆;Γ, x :j A ` b :k B
j < k

∆;Γ ` λx. b :k Πx :j A.B

DT-AppTy
∆;Γ ` b :k Πx :j A.B
∆;Γ ` a :j A j < k
∆;Γ ` b a :k B{a/x}

DT-Var
x : jA ∈ Γ

∆ ` Γ j ≤ k
∆;Γ ` x :k A

DT-Const
x : jA := a ∈ ∆

∆ ` Γ
` ∆ i + j ≤ k
∆;Γ ` xi :k A+i

DT-Bottom
∆ ` Γ

∆;Γ ` ⊥ :k ?

DT-Absurd
∆;Γ ` A :k ?

∆;Γ ` b :k ⊥
∆;Γ ` absurd(b) :k A

DT-Conv
∆;Γ ` a :k A
∆;Γ ` B :k ?
∆ ` A ≡ B
∆;Γ ` a :k B

Fig. 2. Typing rules (subStraTT)

Remark 1. The level annotation on dependent function types is necessary for
consistency. Informally, suppose we have some unannotated type ΠX :?.B and a
function of this type, both at level 1. By cumulativity, we can raise the level of the
function to 2, then apply it to its own type ΠX :?.B. In short, impredicativity
is reintroduced, and stratification defeated.

Rules DT-Bottom and DT-Absurd are the uninhabited type and its elim-
inator, respectively. The eliminator appears to only be able to eliminate a false-
hood into the same level, but cumulativity, formally defined shortly, will permit
raising the level of a falsehood, which can then be eliminated at that level.

Remark 2. More generally, the level of a well-typed term must match that of its
type, which we prove later as a Regularity lemma. Intuitively, the level of a typing
judgement represents the level of all the subderivations (up to cumulativity) used
to construct its derivation tree, which enforces predicativity at the derivation
level. Since proving regularity amounts to constructing a derivation for the type
out of the subderivations of the term, the level of the type could not possibly be
any higher than that of the term.

In rules DT-Var and DT-Const, variables and constants at level j can be
used at any larger level k, which we refer to as subsumption. This permits the
following admissible cumulativity lemma, allowing entire derivations to be used
at higher levels.

Lemma 1 (Cumulativity).1 If ∆;Γ ` a :j A and j ≤ k then ∆;Γ ` a :k A.
1coq/restrict.v:DTyping_cumul

https://github.com/plclub/StraTT/tree/main/coq/restrict.v


6 Jonathan Chan and Stephanie Weirich

Constants are further annotated with a superscript indicating how much
they’re displaced by. If a constant x is defined with a type A, then xi is an element
of type A but with all of its levels incremented by i. The metafunction a+i

performs this increment in the term a, defined recursively with (Πx :j A.B)+i =
Πx :i+j A+i.B+i and (xj)+i = xi+j. Constants come from signatures and variables
from contexts, whose formation rules are given in Figure 3.

` ∆ ∆ ` Γ

D-Cons
` ∆ ∆;∅ ` A :k ?

∆;∅ ` a :k A x 6∈ dom∆

` ∆, x :k A := a

DG-Cons
∆ ` Γ ∆;Γ ` A :k ?

x 6∈ domΓ x 6∈ dom∆

∆ ` Γ, x :k A

Fig. 3. Signature and context formation rules (excerpt)

In rule DT-Conv, we use an untyped definitional equality ∆ ` a ≡ b that
is reflexive, symmetric, transitive, and congruent. The full set of rules are
given in Figure 4, including β-equivalence for functions (rule DE-Beta) and
δ-equivalence of constants x with their definitions (rule DE-Delta). When a
constant is displaced as xi, we must also increment the level annotations in their
definitions by i.

∆ ` a ≡ b (Definitional equality)

DE-Refl

∆ ` a ≡ a

DE-Sym
∆ ` b ≡ a
∆ ` a ≡ b

DE-Trans
∆ ` a ≡ b ∆ ` b ≡ c

∆ ` a ≡ c

DE-Beta

∆ ` (λx. b) a ≡ b{a/x}

DE-Delta
x : kA := a ∈ ∆

∆ ` xi ≡ a+i

DE-Pi
∆ ` A ≡ A′

∆ ` B ≡ B′

∆ ` Πx :k A.B ≡ Πx :k A′.B′

DE-Abs
∆ ` b ≡ b′

∆ ` λx. b ≡ λx. b′

DE-App
∆ ` a ≡ a′

∆ ` b ≡ b′

∆ ` b a ≡ b′ a′

DE-Absurd
∆ ` b ≡ b′

∆ ` absurd(b) ≡ absurd(b′)

Fig. 4. Definitional equality rules (subStraTT)

Given a well-typed, locally-closed term ∆;∅ ` a :k A, the entire derivation
itself can be displaced upwards by some increment i. This lemma differs from
cumulativity, since the level annotations in the term and its type are displaced
as well, not just that of the judgement.

Lemma 2 (Displaceability (empty context)).2 If ∆;∅ ` a :k A then ∆;∅ `
a+i :i+k A+i.

2coq/incr.v:DTyping_incr

https://github.com/plclub/StraTT/tree/main/coq/incr.v
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With x :k A := a in the signature, xi is definitionally equal to a+i, so this
lemma justifies rule DT-Const, which would give this displaced constant the
type A+i at level i + k.

2.2 Floating functions

As we’ll see in the next section, subStraTT alone is insufficiently expressive, with
some examples being unexpectedly untypeable and others being simply clunky
to work with as a result of the strict restriction on function domains. The full
StraTT system therefore extends the subsystem with a separate nondependent
function type, written A → B, whose domain doesn’t have the same restriction.

DT-Arrow
∆;Γ ` A :k ? ∆;Γ ` B :k ?

∆;Γ ` A → B :k ?

DT-AbsTm
∆;Γ ` A :k ?

∆;Γ ` B :k ? ∆;Γ, x :k A ` b :k B
∆;Γ ` λx. b :k A → B

DT-AppTm
∆;Γ ` b :k A → B ∆;Γ ` a :k A

∆;Γ ` b a :k B

DE-Arrow
∆ ` A ≡ A′ ∆ ` B ≡ B′

∆ ` A → B ≡ A′ → B′

Fig. 5. Typing and definitional equality rules (floating functions)

The typing rules for nondependent function types, functions, and application
are given in Figure 5. The domain, codomain, and entire nondependent function
type are all typed at the same level. Functions take arguments of the same level
as their bodies, and are thus applied to arguments of the same level.

This distinction between stratified dependent and unstratified nondepen-
dent functions corresponds closely to Stratified System F: type polymorphism
is syntactically distinct from ordinary function types, and the former forces the
codomain to be a higher level while the latter doesn’t. From the perspective of
Stratified System F, the dependent types of StraTT generalize stratified type
polymorphism over types to include term polymorphism.

We say that the domain of these nondependent function types floats because
unlike the stratified dependent function types, it isn’t fixed to some particular
level. The interaction between floating functions and cumulativity is where this
becomes interesting. Given a function f of type A → B at level j, by cumulativity,
it remains well typed with the same type at any level k ≥ j. The level of the
domain floats up from j to match the function at k, in the sense that f can be
applied to an argument of type A at any greater level k. This is unusual because
the domain isn’t contravariant with respect to the ordering on the levels as
expected, and is why, as we’ll see shortly, the proof of consistency in Section 4.1
can’t be straightforwardly extended to accommodate floating function types.
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3 Examples

3.1 The identity function

In the following examples, we demonstrate why floating functions are essential.
Below on the left is one way we could assign a type to the type-polymorphic
identity function. For concision, we use a pattern syntax when defining global
functions and place function arguments to the left of the definition. (The sub-
script is part of the constant name.)

id0 :1 ΠX :0 ?.Πx :0 X .X id :1 ΠX :0 ?.X → X
id0 X x := x id X x := x

Stratification enforces that the codomain of the function type and the func-
tion body have a higher level than that of the domain and the argument, so the
overall identity function is well typed at level 1. While x and X have level 0 in
the context of the body, by subsumption we can use x at level 1 as required.

Alternatively, since the return type doesn’t depend on the second argument,
we can use a floating function type instead, given above on the right. Since we still
have a dependent type quantification, the function X → X is still typed at level
1. This means that x now has level 1 directly rather than through subsumption.

So far, there’s no reason to pick one over the other, so let’s look at a more
involved example: applying an identity function to itself. This is possible due to
cumulativity, and we’ll follow the corresponding Coq example below.

Universes u0 u1.

Constraint u0 < u1.

Definition idid1 (id : forall (X : Type@{u1}), X -> X) :

forall (X : Type@{u0}), X -> X :=

id (forall (X : Type@{u0}), X -> X) (fun X => id X).

Here, since forall (X : Type@{u0}), X -> X can be assigned type Type@{u1},
it can be applied as the first argument to id. For the second argument, while id

itself doesn’t have this type, we can η-expand it to a function that does, since
Type@{u0} is a subtype of Type@{u1}, so X can be passed to id.

If we try to write the analogous definition in subStraTT without using float-
ing functions, we find that it doesn’t type check! The problematic subterm is
underlined in red below.

idid1 :3 Πid :2 (ΠX :1 ?.Πx :1 X .X).ΠX :0 ?.Πx :0 X .X
idid1 id := id (ΠX :0 ?.Πx :0 X .X) (λX . λx. id X x)

After η-expansion, λX . λx. id X x has the correct type ΠX :0 ?.Πx :0 X .X ,
but at level 2, the declared the level of id itself. Meanwhile, the second argument
of id expects an argument of that type but at level 1. We can’t just raise the
level annotation for that argument to 2, either, since that would raise the level
of id to 3.
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If we instead use floating functions for the nondependent argument, the anal-
ogous definition then does type check, since the second argument of type X can
now be at level 2.

idid1 :2 (ΠX :1 ?.X → X) → ΠX :0 ?.X → X
idid1 id := id (ΠX :0 ?.X → X) (λX . id X)

This definition of idid1 is now shaped the same as the Coq version, only with
level annotations on domains where Coq has the corresponding level annotations
on Type. If we were to turn on universe polymorphism in Coq, it would achieve
the same kind of expressivity of being able to displace idid2 in StraTT. The
main difference is that while Coq merely enforces a strict inequality constraint
between the levels, in StraTT the levels annotations are concrete, so even with
displacement, the distance between the two levels in the type is always 1.

As an additional remark, even with floating functions, repeatedly nesting
identity function self-applications is one way to non-trivially force the level
to increase. The following definitions continue the pattern from idid1, which
in the untyped setting would correspond to λid. id id, λid. id (λid. id id) id,
λid. id (λid. id (λid. id id) id) id, and so on.

idid2 :3 (ΠX :2 ?.X → X) → ΠX :0 ?.X → X
idid2 id := id ((ΠX :1 ?.X → X) → ΠX :0 ?.X → X) idid1 (λX . λx. id X x)
idid3 :4 (ΠX :3 ?.X → X) → ΠX :0 ?.X → X
idid3 id := id ((ΠX :2 ?.X → X) → ΠX :0 ?.X → X) idid2 (λX . λx. id X x)

All of idid1 (λX . λx. x), idid2 (λX . λx. x), and idid3 (λX . λx. x) reduce to
λX . λx. x.

3.2 Decidable types
The following example demonstrates a more substantial use of StraTT in the
form of type constructors as floating functions and how they interact with cu-
mulativity. Later in Section 5 we’ll consider datatypes with parameters, but
for now, consider the following Church encoding [7] of decidable types, which
additionally uses negation defined as implication into the empty type.

neg :0 ? → ? yes :1 ΠX :0 ?.X → Dec X
neg X := X → ⊥ yes X x := λZ . λf . λg. f x
Dec :1 ? → ? no :1 ΠX :0 ?. neg X → Dec X
Dec X := ΠZ :0 ?. (X → Z) → (neg X → Z) → Z no X nx := λZ . λf . λg. g nx

The yes X constructor decides X by a witness, while the no X constructor
decidesX by its refutation. We can show that deciding a given type is irrefutable.3

3Note this differs from irrefutability of the law of excluded middle, neg (neg (ΠX :0

?.Dec X)), which cannot be proven constructively.



10 Jonathan Chan and Stephanie Weirich

irrDec : ΠX :0 ?. neg (neg (Dec X))

irrDec X ndec := ndec (no X (λx.ndec (yes X x)))

The same exercise of trying to define neg and Dec using only dependent func-
tions and not floating functions to the same effect of no longer being able to type
check irrDec, even if we allow ourselves to use displacement. More interestingly,
let’s now compare these definitions to more-or-less corresponding ones in Agda.

{-# OPTIONS --cumulativity #-}

open import Agda.Primitive using (lzero ; lsuc)

open import Data.Empty using (⊥)

neg : ∀ ℓ → Set ℓ → Set ℓ

neg ℓ X = X → ⊥

Dec : ∀ ℓ → Set (lsuc ℓ) → Set (lsuc ℓ)

Dec ℓ X = (Z : Set ℓ) → (X → Z) → (neg (lsuc ℓ) X → Z) → Z

yes : ∀ ℓ (X : Set ℓ) → X → Dec ℓ X

yes ℓ X x = λ Z f g → f x

no : ∀ ℓ (X : Set ℓ) → neg ℓ X → Dec ℓ X

no ℓ X nx = λ Z f g → g nx

Universe polymorphism is required to capture some of the expressivity of
floating functions. For instance, to talk about the negation or the decidabili-
tyof a type at level 1, by cumulativity it suffices to use neg and Dec respec-
tively (without displacement!) in StraTT, but we must use neg (lsuc lzero)

and Dec (lsuc lzero) in Agda. However, since the constructors for Dec use the
type argument dependently, in StraTT the level of that argument is fixed at
0. The constructors must be displaced to yes1 and no1 to construct proofs of
Dec1, just as yes (lsuc lzero) and no (lsuc lzero) would construct proofs of
Dec (lsuc lzero).

3.3 Leibniz equality

Although nondependent functions can often benefit from a floating domain,
sometimes we don’t want the domain to float. Here, we turn to a simple applica-
tion of dependent types with Leibniz equality [24,29] to demonstrate a situation
where the level of the domain needs to be fixed to a strictly lower level even
when the codomain doesn’t depend on the function argument.

eq :1 ΠX :0 ?.X → X → ? refl :1 ΠX :0 ?.Πx :0 X . eq X x x
eq X x y := ΠP :0 X → ?.P x → P y refl X x P px := px

An equality eq A a b states that two terms are equal if given any predicate
P , a proof of P a yields a proof of P b; in other words, a and b are indiscernible.
The proof of reflexivity should be unsurprising.
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We might try to define a predicate stating that a given type X is a mere
proposition, i.e. that all of its inhabitants are equal, and give it a nondependent
function type.

isProp :0 ? → ?

isProp X := Πx :0 X .Πy :0 X . eq X x y

But this doesn’t type check, since the body contains an equality over ele-
ments of X, which necessarily has level 1 rather than the expected level 0. We
must assign isProp a stratified function type, given below on the left; informally,
stratification propagates dependency information not only from the codomain,
but also from the function body.

isProp :1 ΠX :0 ?. ? isSet :2 ΠX :0 ?. ?

isProp X := Πx :0 X .Πy :0 X . eq X x y isSet X := Πx :0 X .Πy :0 X . isProp1 (eq X x y)

Going one further, we define above on the right a predicate isSet stating
that X is an h-set [44], or that its equalities are mere propositions, by using a
displaced isProp so that we can reuse the definition at a higher level; here, isProp1

now has type ΠX :1 ?. ? at level 2. Once again, despite the type of isSet not being
an actual dependent function type, we need to fix the level of the domain.

4 Metatheory

4.1 Consistency of subStraTT

We use Agda to mechanize a proof of logical consistency — that no closed inhabi-
tant of the empty type exists — for subStraTT, which excludes floating nondepen-
dent functions. For simplicity, the mechanization also excludes global definitions
and displaced constants, which shouldn’t affect consistency: if there is a closed
inhabitant of the empty type that uses global definitions, then there is a closed
inhabitant of the empty type under the empty signature by inlining all global
definitions. The proof files are available at https://github.com/plclub/StraTT
under the agda/ directory. The only axiom we use is function extensionality.4

The core construction of the consistency proof is a three-place logical relation
a ∈ JAKk among a term, its type, and its level, which we would aspirationally
like to define as in Figure 6. Informally, this represents the interpretation of
the type A as a set of closed terms which behave according to that type. For
instance, a term f is in the interpretation of a function type if for every term
y which behaves according to the domain, the term f y behaves according to
the codomain. Consistency follows from the fact that the interpretation of the
empty type is empty. In our working metatheory, we use 0 for falsehood, 1 for
truthhood, ∧ for conjunction, −→ for implication, and ∀ and ∃ for universal and
existential quantification .

4agda/accessibility.agda:funext,funext'

https://github.com/plclub/StraTT
https://github.com/plclub/StraTT/tree/main/agda/accessibility.agda
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a ∈ JAKk

? ∈ J?Kk , 1 Πx :j A.B ∈ J?Kk , j < k ∧A ∈ J?Kj

⊥ ∈ J?Kk , 1 ∧ (∀y. y ∈ JAKj −→ B{y/x} ∈ J?Kk)

a ∈ J⊥Kk , 0 f ∈ JΠx :j A.BKk , ∀y. y ∈ JAKj −→ f y ∈ JB{y/x}Kk
a ∈ JAKk , ∃B.A ≡ B ∧ a ∈ JBKk

Fig. 6. Ill-formed logical relation between terms and types

However, this definition isn’t necessarily well formed. It isn’t defined recur-
sively on the structure of the terms or the types, because in the cases involving
dependent functions, we need to talk about the substituted type B{y/x}. It isn’t
defined inductively, either, because again in the dependent function case, the in-
ductive itself would appear to the left of an implication as y ∈ JAKj , making the
inductive definition non-strictly-positive.

The solution is to define the logical relation as an inductive–recursive defini-
tion [16]. This design is adapted from a concise proof of consistency for MLTT
in Coq by Liu [27], which uses an impredicative encoding in place of induction–
recursion. This is a simplified and pared down adaptation of a proof of decid-
ability of conversion for MLTT in Coq by Adjedj, Lennon-Bertrand, Maillard,
Pédrot, and Pujet [2], which in turn uses a predicative encoding to adapt a proof
of decidability of conversion for MLTT in Agda by Abel, Öhman, and Vezzosi [1]
that uses induction–recursion.

Figure 7 sketches the inductive–recursive definition, which splits the logical
relation into two parts: an inductive predicate on types and their levels JAKk ,
and a relation between types and terms defined recursively on the predicate on
the type, which we continue to write as a ∈ JAKk .

JAKk a ∈ JAKk

J?Kk J⊥Kk

j < k JAKj
∀y. y ∈ JAKj −→ JB{y/x}Kk

JΠx :j A.BKk

A ⇒ B JBKk
JAKk

A ∈ J?Kk , JAKk f ∈ JΠx :j A.BKk , ∀y. y ∈ JAKj −→ f y ∈ JB{y/x}Kk
a ∈ J⊥Kk , 0 a ∈ JAKk , a ∈ JBKk (where A ⇒ B)

Fig. 7. Inductive–recursive logical relation between terms and types

In the last inductive rule, in place of A ≡ B, we instead use parallel reduction
A ⇒ B , which is a reduction relation describing all visible reductions being
performed in parallel from the inside out. This is justified by the following lemma,
where A ⇒∗ B is the reflexive, transitive closure of A ⇒ B.
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Lemma 3 (Implementation of definitional equality).5 A ≡ B iff there
exists some C such that A ⇒∗ C ∗⇐ B, which we write as A ⇔ B .

Even now, this inductive–recursive definition is still not well formed. In par-
ticular, in the inductive rule for dependent functions, if A is ?, then by the
recursive case for the universe, JyKj could again appear to the left of an implica-
tion. However, we know that j < k, which we can exploit to stratify the logical
relation just as we stratify typing judgements. We do so by parametrizing each
logical relation at level k by an abstract logical relation defined at all strictly
lower levels j < k, then at the end tying the knot by instantiating them via well-
founded induction on levels. This technique is adapted from an Agda model of a
universe hierarchy by Kovács [23], which originates from McBride’s redundancy-
free construction of a universe hierarchy [33, Section 6.3.1]. As the constructions
are now fairly involved, we defer to the proof file6 for the full definitions, in
particular U for the inductive predicate and el for the recursive relation. For the
purposes of exposition, we continue to use the old notation.

Because the logical relation only handles closed terms, we deal with contexts
and simultaneous substitutions σ separately by relating the two via yet another
inductive–recursive definition in Figure 8, with a predicate on contexts JΓK and
a relation between substitutions and contexts σ ∈ JΓK . A{σ} denotes applying
the simultaneous substitution σ to the term A, and σ[x] denotes the term which
σ substitutes for x.7

JΓK σ ∈ JΓK

J∅K
JΓK ∀σ. σ ∈ JΓK −→ JA{σ}Kk

JΓ, x :k AK

σ ∈ J∅K , 1

σ ∈ JΓ, x :k AK , σ ∈ JΓK ∧ σ[x] ∈ JA{σ}Kk

Fig. 8. Inductive–recursive logical relation between substitutions and contexts

The most important lemmas that are needed are semantic cumulativity, se-
mantic conversion, and backward preservation.

Lemma 4 (Cumulativity).8 Suppose j < k. If JAKj then JAKk, and if a ∈ JAKj
then a ∈ JAKk.

Lemma 5 (Conversion).9 Suppose A ⇔ B. If JAKk then JBKk, and if a ∈ JAKk
then a ∈ JBKk.

Lemma 6 (Backward preservation).10 If a ⇒∗ b and b ∈ JAKk then a ∈ JAKk.
5agda/typing.agda:≈-⇔
6agda/semantics.agda
7The mechanization uses de Bruijn indexing; various index-shifting operations on sub-
stitutions are omitted for concision.

8agda/semantics.agda:cumU,cumEl
9agda/semantics.agda:⇔-U,⇔-el

10agda/semantics.agda:⇒⋆-el

https://github.com/plclub/StraTT/tree/main/agda/typing.agda
https://github.com/plclub/StraTT/tree/main/agda/semantics.agda
https://github.com/plclub/StraTT/tree/main/agda/semantics.agda
https://github.com/plclub/StraTT/tree/main/agda/semantics.agda
https://github.com/plclub/StraTT/tree/main/agda/semantics.agda
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We can now prove the fundamental theorem of soundness of typing judge-
ments with respect to the logical relation by induction on typing derivations,
and consistency follows as a corollary.

Theorem 1 (Soundness).11 Suppose JΓK and σ ∈ JΓK. If Γ ` a :k A, then
JA{σ}Kk and a{σ} ∈ JA{σ}Kk.

Corollary 1 (Consistency).12 There are no b, k such that ∅ ` b :k ⊥.

The problem with floating functions This proof can’t be extended to the
full StraTT. While floating nondependent function types can be added to the
logical relation directly as below, cumulativity will no longer hold.

JAKk JBKk
JA → BKk

f ∈ JA → BKk , ∀x. x ∈ JAKk −→ f x ∈ JBKk

In particular, given j ≤ k and f ∈ JA → BKj , when trying to show f ∈ JA →
BKk, we have by definition ∀x. x ∈ JAKj −→ f x ∈ JBKj , a term x, and x ∈ JAKk,
but no way to cast the latter into x ∈ JAKj to obtain f x ∈ JBKk as desired
via the induction hypothesis, because such a cast would go downwards from a
higher level k to a lower level j, rather than the other way around as provided
by the induction hypothesis. Trying to incorporate the desired property into the
relation, perhaps by defining it as ∀` ≥ k. ∀x. x ∈ JAK` −→ f x ∈ JBKk, would
break the careful stratification of the logical relation that we’ve set up.

The violation of cumulativity due to floating functions is independent of
our method of logical relations. If we try to prove consistency via a translation
into an existing type theory with a cumulative universe hierarchy, for instance
Agda with cumulative universes, a similar direct translation of floating functions
would cause the same issue. Concretely, suppose we translate the type ? →
? at some level k into the Agda function type Set k → Set k. To prove that
the translation preserves StraTT’s cumulativity, we would require a function of
the type (Set k → Set k) → (Set (lsuc k) → Set (lsuc k)), which has the same
problem of needing a downward cast. Such a translation would still need to be
stratified by level to be well defined, so a universe-polymorphic translation to
∀ ℓ → Set ℓ ⊔ k → Set ℓ ⊔ k wouldn’t be viable either.

4.2 Type safety of StraTT

While we haven’t yet proven its consistency, we have proven type safety of the
full StraTT. We use Coq to mechanize the syntactic metatheory of the typing,
context formation, and signature formation judgements of StraTT, recalling that
this covers all of stratified dependent functions, floating nondependent functions,
and displaced constants. We also use Ott [39] along with the Coq tools LNgen [4]

11agda/soundness.agda:soundness
12agda/consistency.agda:consistency

https://github.com/plclub/StraTT/tree/main/agda/soundness.agda
https://github.com/plclub/StraTT/tree/main/agda/consistency.agda
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and Metalib [3] to represent syntax and judgements and to handle their locally-
nameless representation in Coq. The proof scripts are available at https://github.
com/plclub/StraTT under the coq/ directory.

We begin with some basic common properties of type systems, namely weak-
ening, substitution, and regularity lemmas, as well as a generalized displace-
ability lemma. Next, we introduce a notion of restriction, which formalizes the
idea that lower judgements can’t depend on higher ones, along with a notion of
restricted floating, which is crucial for proving that floating function types are
syntactically cumulative. Only then are we able to prove type safety.

As we haven’t mechanized the syntactic metatheory of definitional equality
∆ ` A ≡ B, we state as axioms some standard, provable properties [5, Section
5.2], which are orthogonal to stratification and only used in the final proof of type
safety. The equivalent lemmas for subStraTT, however, have been mechanized in
Agda13 as part of the consistency proof.

Axiom 2 (Function type injectivity)14 If ∆ ` A1 → B1 ≡ A2 → B2 then
∆ ` A1 ≡ A2 and ∆ ` B1 ≡ B2. If Πx :j1 A1.B1 ≡ Πx :j2 A2.B2 then ∆ ` A1 ≡
A2 and j1 = j2 and ∆ ` B1 ≡ B2.

Axiom 3 (Consistency of definitional equality)15 If ∆ ` A ≡ B then A
and B do not have different head forms.

Basic properties We extend the ordering between levels j ≤ k to an order-
ing between contexts Γ1 ≤ Γ2 that also incorporates weakening in Figure 9.
Stronger contexts have higher levels and fewer assumptions.

Γ1 ≤ Γ2 (Ordering on contexts)

S-Nil

∅ ≤ ∅

S-Cons
j ≤ k Γ1 ≤ Γ2

Γ1, x :j A ≤ Γ2, x :k A

S-Weak
Γ1 ≤ Γ2

Γ1, x :k A ≤ Γ2

Fig. 9. Context subsumption rules

This ordering is contravariant in the typing judgement: we may lower the con-
text without destroying typeability. This result subsumes a standard weakening
lemma.

Lemma 7 (Weakening).16 If ∆;Γ ` a :k A and ∆ ` Γ′ and Γ′ ≤ Γ then
∆;Γ′ ` a :k A.

The substitution lemma reflects the idea that an assumption x :k B is a
hypothetical judgement. The variable x stands for any typing derivation of the
appropriate type and level.

13agda/reduction.agda
14coq/axioms.v:DEquiv_{Arrow,Pi}_inj{1,2,3}
15coq/axioms.v:ineq_*
16coq/ctx.v:DTyping_SubG

https://github.com/plclub/StraTT
https://github.com/plclub/StraTT
https://github.com/plclub/StraTT/tree/main/agda/reduction.agda
https://github.com/plclub/StraTT/tree/main/coq/axioms.v
https://github.com/plclub/StraTT/tree/main/coq/axioms.v
https://github.com/plclub/StraTT/tree/main/coq/ctx.v
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Lemma 8 (Substitution).17 If ∆;Γ1, x :j B,Γ2 ` a :k A and ∆;Γ1 ` b :j B
then ∆;Γ1,Γ2{b/x} ` a{b/x} :k A{b/x}.

Typing judgements themselves ensure the well-formedness of their compo-
nents: if a term type checks, then its type can be typed at the same level.
Because our type system includes the non–syntax-directed rule T-Conv, the
proof of this lemma depends on several inversion lemmas, omitted here.

Lemma 9 (Regularity).18 If ∆;Γ ` a :k A then ` ∆ and ∆ ` Γ and
∆;Γ ` A :k ?.

Generalizing displaceability in an empty context, derivations can be displaced
wholesale by also incrementing contexts, written Γ+i, where (Γ, x :k A)+i =
Γ+i, x :k+i A+i.

Lemma 10 (Displaceability).19 If ∆;Γ ` a :k A then ∆;Γ+j ` a+j :j+k A+j.

If we displace a context, the result might not be stronger because displace-
ment may modify the types in the assumptions. In other words, it is not the case
that Γ ≤ Γ+k.

Restriction The key idea of stratification is that a judgement at level k is only
allowed to depend on judgements at the same or lower levels. One way to observe
this property is through a form of strengthening result, which allows variables
from higher levels to be removed from the context and contexts to be truncated
at any level. Formally, we define the restriction operation, written dΓek, which
filters out all assumptions from the context with level greater than k. A restricted
context may be stronger since it could contain fewer assumptions.

Lemma 11 (Restriction).20 If ∆ ` Γ then ∆ ` dΓek for any k, and if
∆;Γ ` a :k A then ∆; dΓek ` a :k A.

Lemma 12 (Restriction subsumption).21 Γ ≤ dΓek.

Restricted floating Subsumption allows variables from one level to be made
available to all higher levels using their current type. However, when we use this
rule in a judgement, it doesn’t change the context that is used to check the term.
This can be restrictive — we can only substitute their assumptions with lower
level derivations.

In some cases, we can raise the level of some assumptions in the context
when we raise the level of the judgement without displacing their types or the

17coq/subst.v:DTyping_subst
18coq/ctx.v:DCtx_DSig , coq/inversion.v:DTyping_DCtx , coq/ctx.v:DTyping_regularity
19coq/ctx.v:DTyping_incr
20coq/ctx.v:DSig_DCtx_DTyping_restriction
21coq/restrict.v:SubG_restrict

https://github.com/plclub/StraTT/tree/main/coq/subst.v
https://github.com/plclub/StraTT/tree/main/coq/ctx.v
https://github.com/plclub/StraTT/tree/main/coq/inversion.v
https://github.com/plclub/StraTT/tree/main/coq/ctx.v
https://github.com/plclub/StraTT/tree/main/coq/ctx.v
https://github.com/plclub/StraTT/tree/main/coq/ctx.v
https://github.com/plclub/StraTT/tree/main/coq/restrict.v
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rest of the context. For example, suppose we have a derivation for the judgement
f :j Πx :i A.B, x :i A ` f x :j B where i < j. We could derive the same judgement
at a higher level k > j where we also raise the level of f to k. However, we can’t
raise x from its lower level i because then it would be invalid as an argument
to f . In general, we can only raise the level of variables at the same level as the
entire judgement.

To prove this formally, we must work with judgements that don’t have any
assumptions above the current level by using the restriction operation to discard
them. Next, to raise certain levels, we introduce a floating operation on contexts
↑k

j Γ that raises assumptions in Γ at level j to a higher level k without displacing
their types.

Lemma 13 (Restricted Floating).22 If ∆;Γ ` a :j A and j ≤ k then
∆; ↑k

j (dΓej) ` a :k A.

The restricted floating lemma is required to prove cumulativity of judgements.

Lemma 14 (Cumulativity).23 If ∆;Γ ` a :j A and j ≤ k then ∆;Γ ` a :k A.

In the nondependent function case ∆;Γ ` λx. b :j A → B, where we want
to derive the same judgement at level k ≥ j, we get by inversion the premise
∆;Γ, x :j A ` b :j B, while we need ∆;Γ, x :k A ` b :k B. Restricted floating and
weakening allows us to raise the level of b together with the single assumption
x from level j to level k.

Type Safety We can now show that this language satisfies the preservation
(i.e. subject reduction) and progress lemmas with respect to call by name βδ-
reduction ∆ ` a  b , whose rules are given in Figure 10. For progress, values
are type formers and abstractions.

Theorem 4 (Preservation).24 If ∆;Γ ` a :k A and ∆ ` a  a′ then ∆;Γ `
a′ :k A.

Theorem 5 (Progress).25 If ∆;∅ ` a :k A then a is a value or ∆ ` a  b for
some b.

5 Prototype implementation

We have implemented a prototype type checker, which can be found at https://
github.com/plclub/StraTT under the impl/ directory, including a brief overview

22coq/restrict.v:DTyping_float_restrict
23coq/restrict.v:DTyping_cumul
24coq/typesafety.v:Reduce_Preservation
25coq/typesafety.v:Reduce_Progress

https://github.com/plclub/StraTT
https://github.com/plclub/StraTT
https://github.com/plclub/StraTT/tree/main/coq/restrict.v
https://github.com/plclub/StraTT/tree/main/coq/restrict.v
https://github.com/plclub/StraTT/tree/main/coq/typesafety.v
https://github.com/plclub/StraTT/tree/main/coq/typesafety.v
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∆ ` a  b (Reduction)

R-Beta

∆ ` (λx. b) a  b{a/x}

R-Delta
x : kA := a ∈ ∆

∆ ` xi  a+i

R-App
∆ ` b  b′

∆ ` b a  b′ a

R-Absurd
∆ ` b  b′

∆ ` absurd(b) absurd(b′)

Fig. 10. Call by name reduction rules

of the concrete syntax.26 This implementation is based on pi-forall [45], a simple
bidirectional type checker for a dependently-typed programming language.

For convenience, displacements and level annotations on dependent types can
be omitted; the type checker then generates level metavariables in their stead.
When checking a single global definition, constraints on level metavariables are
collected, which form a set of integer inequalities on metavariables. An SMT
solver checks that these inequalities are satisfiable by the naturals and finally
provides a solution that minimizes the levels. Therefore, assuming the collected
constraints are correct, if a single global definition has a solution, then a solution
will always be found. However, we don’t know if this holds for a set of global
definitions, because the solution for a prior definition might affect whether a
later definition that uses it is solveable. Determining what makes a solution
“better” or “more general” to maximize the number of global definitions that
can be solved is part of future work.

The implementation additionally features stratified datatypes, case expres-
sions, and recursion, used to demonstrate the practicality of programming in
StraTT. Restricting the datatypes to inductive types by checking strict positivity
and termination of recursive functions is possible but orthogonal to stratification
and thus out of scope for this work. The parameters and arguments of datatypes
and their constructors respectively can be either floating (i.e. nondependent)
or fixed (i.e. dependent), with their levels following rules analogous to those of
nondependent and dependent functions. Additionally, datatypes and construc-
tors can be displaced like constants, in that a displaced constructor only belongs
to its datatype with the same displacement.

We include with our implementation a small core library,27 and all the exam-
ples that appear in this paper have been checked by our implementation.28 In the
subsections to follow, we examine three particular datatypes in depth: decidable
types, propositional equality, and dependent pairs.

5.1 Decidable types

Revisiting an example from Section 3, we can define Dec as a datatype.
26impl/README.pi
27impl/pi/README.pi
28impl/pi/StraTT.pi

https://github.com/plclub/StraTT/tree/main/impl/README.pi
https://github.com/plclub/StraTT/tree/main/impl/pi/README.pi
https://github.com/plclub/StraTT/tree/main/impl/pi/StraTT.pi
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data Dec (X : ?) :0 ? where
Yes :0 X → Dec X
No :0 neg X → Dec X

The lack of annotation on the parameter indicates that it’s a floating do-
main, so that λX .Dec X can be assigned type ? → ? at level 0. Datatypes and
their constructors, like variables and constants, are cumulative, so the aforemen-
tioned type assignment is valid at any level above 0 as well. When destructing
a datatype, the constructor arguments of each branch are typed such that the
constructor would have the same level as the level of the scrutinee. Consider the
following proof that decidability of a type implies its double negation elimina-
tion, which requires inspecting the decision.

decDNE :1 ΠX :0 ?.Dec X → neg (neg X) → X
decDNE X dec nn := case dec of

Yes y ⇒ y
No x ⇒ absurd(nn x)

By the level annotation on the function, we know that dec and nn both have
level 1. Then in the branches, the patterns Yes y and No x must also be typed
at level 1, so that y has type X and x has type neg X both at level 1.

5.2 Propositional equality

Datatypes and their constructors, like constants, can be displaced as well, uni-
formly raising the levels of their types. We again revisit an example from Sec-
tion 3 and now define a propositional equality as a datatype with a single reflex-
ivity constructor.

data Eq (X :0 ?) :1 X → X → ? where
Refl :1 Πx :0 X .Eq X x x

This time, the parameter has a level annotation indicating that it’s fixed at
0, while its indices are floating. Displacing Eq by 1 would then raise the fixed
parameter level to 1, while the levels of Eq1 itself and its floating indices always
match but can be 2 or higher by cumulativity. Its sole constructor would be
Refl1 containing a single argument of type X at level 1. Displacement is needed
to state and prove propositions about equalities between equalities, such as the
uniqueness of equality proofs.29

UIP :2 ΠX :0 ?.Πx :0 X .Πp :1 Eq X x x.Eq1 (Eq X x x) p (Refl x)
UIP X x p := case p of Refl x ⇒ Refl1 (Refl x)

29The provability of this principle, also known as UIP [19], is more a consequence of the
quirks of unification in pi-forall than an intentional design.
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5.3 Dependent pairs

Because there are two different function types, there are also two different ways to
define dependent pairs. Using a floating function type for the second component’s
type results in pairs whose first and second projections can be defined as usual,
while using the stratified dependent function type results in pairs whose second
projection can’t be defined using the first. We first take a look at the former.

data NPair (X :0 ?) (P : X → ?) :1 ? where
MkPair :1 Πx :0 X .P x → NPair X P

nfst :1 ΠX :0 ?.ΠP :0 X → ?.NPair X P → X
nfst X P p := case p of MkPair x y ⇒ x
nsnd :2 ΠX :0 ?.ΠP :0 X → ?.Πp :1 NPair X P.P (nfst X P p)
nsnd X P p := case p of MkPair x y ⇒ y

Due to stratification, the projections need to be defined at level 1 and 2
respectively to accommodate dependently quantifying over the parameters at
level 0 and the pair at level 1. Even so, the second projection is well typed, since
P can be used at level 2 by subsumption to be applied to the first projection at
level 2 also by subsumption in the return type of the second projection.

As the two function types are distinct, we do need both varieties of dependent
pairs. In particular, with the above pairs alone, we aren’t able to type check a
universe of propositions NPair ? isProp, as the predicate has type ΠX :0 ?. ?.

data DPair (X :0 ?) (P : Πx :0 X . ?) :1 ? where
MkPair :1 Πx :0 X .P x → DPair X P

dfst :2 ΠX :0 ?.ΠP :1 (Πx :0 X . ?).DPair X P → X
dfst X P p := case p of MkPair x y ⇒ x
dsnd :2 ΠX :0 ?.ΠP :1 (Πx :0 X . ?).Πp :1 DPair X P.

case p of MkPair x y ⇒ P x
dsnd X P p := case p of MkPair x y ⇒ y

In the second variant of dependent pairs where P is a stratified dependent
function type, the domain of P is fixed to level 0, so in the type in dsnd, it can’t
be applied to the first projection, but it can still be applied to the first component
by matching on the pair. Now we’re able to type check DPair ? isProp.

In both cases, the first component of the pair type has a fixed level, while
the second component is floating, so using a predicate at a higher level results
in a pair type at a higher level by subsumption. Consider the predicate isSet,
which has type ΠX :0 ?. ? at level 2: a universe of sets DPair ? isSet is also well
typed at level 2.

Unfortunately, the first projection dfst can no longer be used on an element
of this pair, since the predicate is now at level 2, nor can its displacement dfst1,
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since that would displace the level of the first component as well. Without proper
level polymorphism, which would allow keeping the first argument’s level fixed
while setting the second argument’s level to 2, we’re forced to write a whole new
first projection function.

In general, this limitation occurs whenever a datatype contains both depen-
dent and nondependent parameters. Nevertheless, in the case of the pair type,
the flexibility of a nondependent second component type is still preferable to a
dependent one that fixes its level, since there would need to be entirely separate
datatype definitions for different combinations of first and second component
levels, i.e. one with levels 0 and 1 (as in the case of isProp), one with levels 0
and 2 (as in the case of isSet), and so on.

6 Discussion

6.1 On consistency

The consistency of subStraTT tells us that the basic premise of using stratifi-
cation in place of a universe hierarchy is sensible. However, as we’ve seen that
directly adding floating functions to the logical relation doesn’t work, an entirely
different approach may be needed to show the consistency of the full StraTT.

One possible direction is to take inspiration from the syntactic metatheory,
especially the Restricted Floating lemma, which is required specifically to show
cumulativity of floating functions. Since cumulativity is exactly where the naïve
addition of floating functions to the logical relation fails, the key may be to
formulate this lemma more semantically.

Another possibility is based on the observation that due to cumulativity,
floating functions appear to be parametric in their stratification level, at least
starting from the smallest level at which it can be well typed. This observa-
tion suggests that some sort of relational model may help to interpret levels
parametrically.

Nevertheless, we strongly believe that StraTT is indeed consistent. The Re-
striction lemma in particular intuitively tells us that nothing at higher levels
could possibly be smuggled into a lower level to violate stratification. As a fur-
ther confidence check, we have verified that four type-theoretic paradoxes which
are possible in an ordinary type theory with type-in-type do not type check in
our implementation. These paradoxes are Burali-Forti’s paradox [8], Russell’s
paradox [38], Hurkens’ paradox [22], and Reynolds’ paradox [37]. In each case,
the definitions reach a point where a higher-level term needs to fit into a lower-
level position to proceed any further — exactly what stratification is designed
to prevent. Appendix A examines these paradoxes in depth.

6.2 On useability

Useability comes down to the balance between practicality and expressivity. On
the practicality side, our implementation demonstrates that if a definition is well
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typed, then its levels and displacements can be completely omitted and inferred,
providing a workflow comparable to Coq or Lean. Additionally, constants are
displaced uniformly, so StraTT doesn’t exhibit the same kind of exponential
blowup in levels and type checking time that can sometimes occur when using
universe-polymorphic definitions in Coq or Lean. This behaviour is triggered
by definitions that abstract over and instantiate multiple implicit levels and
is demonstrated by concrete, though artificial, examples in Appendix B. Their
corresponding StraTT definitions check without issue.30

On the other hand, if a definition is not well typed, debugging it may involve
wading through constraints among generated level metavariables in situations
normally having nothing to do with universe levels, since stratification now in-
volves levels everywhere, in particular when using dependent function types.

On the expressivity side, the displacement system of StraTT falls somewhere
between level monomorphism and prenex level polymorphism; in some scenarios,
it works just as well as polymorphism. For instance, to type check Hurkens’ para-
dox as far as StraTT can, the Coq formulation of the paradox (without type-in-
type) requires universe polymorphism, and the Agda formulation of the paradox
(without type-in-type) requires definitions polymorphic over at least three uni-
verse levels. This is due to types that involve multiple syntactic universes, such
as ΠX :0 ?. (X → ?) → ?, which only involves one level in StraTT, while the cor-
responding Agda type (X : Set ℓ₁) → (X → Set ℓ₂) → Set ℓ₃ requires three. In
Hurkens’ paradox, these three Agda levels must vary independently, but StraTT
achieves the same effect via displacement and floating.

However, in other scenarios, the expressivity of level polymorphism over mul-
tiple level variables is truly needed. In particular, merely having a type construc-
tor with both a dependent domain and a nondependent domain interacts poorly
with cumulativity. Suppose we have some type constructor T :1 Πx :0 X .Y → ?
and a function over elements of this type f :1 Πx :0 X .Πy :0 Y .T x y → Z . By
cumulativity, if y has level 2, then T x y is still well typed by cumulativity at
level 2, but f can no longer be applied to it, since the level of y is now too high.
We would like the second argument of f to float along with T, but this isn’t pos-
sible due to dependency. Making the level of the second argument polymorphic
(subject to the expected constraints) would resolve this issue.

6.3 Related work

StraTT is directly inspired by Leivant’s stratified polymorphism [25,26,14], which
developed from Statman’s ramified polymorphic typed λ-calculus [41]. Stratified
System F, a slight modification of the original system, has since been used to
demonstrate a normalization proof technique using hereditary substitution [17],
which in turn has been mechanized in Coq as a case study for the Equations pack-
age [28]. More recently, an interpreter of an intrinsically-typed Stratified System
F has been mechanized in Agda by Thiemann and Weidner [43], where strat-
ification levels are interpreted as Agda’s universe levels. Similarly, Hubers and

30impl/pi/Blowup.pi

https://github.com/plclub/StraTT/tree/main/impl/pi/Blowup.pi
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Morris’ Stratified Rω, a stratified System Fω with row types, has been mecha-
nized in Agda as well [21]. Meanwhile, displacement comes fromMcBride’s crude-
but-effective stratification [32,31], and we specialize the displacement algebra (in
the sense of Favonia, Angiuli, and Mullanix [20]) to the naturals.

7 Conclusion

In this work, we have introduced Stratified Type Theory, a departure from a
decades-old tradition of universe hierarchies without, we conjecture, succumbing
to the threat of logical inconsistency. By stratifying dependent function types,
we obstruct the usual avenues by which paradoxes manifest their inconsisten-
cies; and by separately introducing floating nondependent function types, we
recover some of the expressivity lost under the strict rule of stratification. Al-
though proving logical consistency for the full StraTT remains future work, we
have proven it for the subsystem subStraTT, and we have provided support-
ing evidence by proving its syntactic metatheory and showing how well-known
type-theoretic paradoxes fail.

Towards demonstrating that StraTT isn’t a mere theoretical exercise but
could form a viable basis for theorem proving and dependently-typed program-
ming, we have implemented a prototype type checker for the language augmented
with datatypes, along with a small core library. The implementation also features
inference for level annotations and displacements, allowing the user to omit them
entirely. We leave formally ensuring that our rules for datatypes don’t violate
existing metatheoretical properties as future work as well.

Given the various useability tradeoffs discussed, as well as the incomplete
status of its consistency, we don’t see any particularly compelling reason for
existing proof assistants to adopt a system based on StraTT. However, we don’t
see any major showstoppers either, so we believe it to be suitable for further
improvement and iteration. Ultimately, we hope that StraTT demonstrates that
alternative treatments of type universes are feasibile and worthy of study, and
opens up fresh avenues in the design space of type theories for proof assistants.
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A Paradoxes

A.1 Burali-Forti’s paradox

Burali-Forti’s paradox [8] in set theory concerns the simultaneous well-founded-
ness and non–well-foundedness of an ordinal. In type theory, we instead consider
a particular datatype U due to Coquand [11],31,32 along with a well-foundedness
predicate for U.

data U :1 ? where
MkU :1 ΠX :0 ?. (X → U) → U

data WF :2 U → ? where
MkWF :2 ΠX :0 ?.Πf :1 X → U. (Πx :1 X .WF (f x)) → WF (MkU X f )

Note that both of these definitions are strictly positive, so we aren’t using
any tricks relying on negative datatypes. It’s easy to show that all elements of
U are well founded.

wf :2 Πu :1 U.WF u
wf u := case u of

MkU X f ⇒ MkWF X f (λx.wf (f x))

The usual paradox, with type-in-type and without stratification, constructs
a U that is provably not well founded.

31Our thanks to Stephen Dolan for detailing to us this example.
32impl/pi/WFU.pi
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loop :1 U
loop := MkU U (λu. u)
nwfLoop :2 WF loop → ⊥
nwfLoop wfLoop := case wfLoop of

MkWF X f h ⇒ nwfLoop (h loop)

In the branch of nwfLoop, by pattern matching on the type of the scrutinee,
X is bound to U and f to λu. u, so h loop correctly has type WF loop. Note that
this definition passes the usual structural termination check, since the recursive
call is done on a subargument from h. Then nwfLoop (wf loop) is an inhabitant
of the empty type.

With stratification, U with level 1 is too large to fit into the type argument
of MkU, which demands level 0, so loop can’t be constructed in the first place.
This is also why the level of a datatype can’t be strictly lower than that of its
constructors, despite such a design not violating the regularity lemma.

A.2 Russell’s paradox
The U above was originally used by Coquand [11] to express a variant of Russell’s
paradox [38].33,34 First, an element of U is said to be regular if it’s provably
inequal to its subarguments; this represents a set which doesn’t contain itself.

regular :1 U → ?

regular u := case u of
MkU X f ⇒ Πx :0 X . (f x = MkU X f ) → ⊥

The trick is to define a U that is both regular and nonregular. Normally, with
type-in-type, this would be one that represents the set of all regular sets.

R :3 U2

R := MkU2 (NPair1 U regular) (nfst1 U regular)

Stratification once again prevents R from type checking, since the pair pro-
jection returns a U and not a U2 as required by the constructor MkU2. The type
contained in the pair can’t be displaced to U2 either, since that would make the
pair’s level too large to fit inside MkU2.

A.3 Hurkens’ paradox
Although we’ve seen that stratification thwarts the paradoxes above, they lever-
age the properties of datatypes and recursive functions, which we haven’t formal-
ized. Here, we turn to the failure of Hurkens’ paradox [22] as further evidence

33An Agda implementation can be found at
https://github.com/agda/agda/blob/master/test/Succeed/Russell.agda [15].

34impl/pi/Russell.pi
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of consistency, which in contrast can be formulated in pure StraTT without
datatypes. Below is the paradox in Coq without universe checking.

Require Import Coq.Unicode.Utf8_core.

Unset Universe Checking.

Definition P (X : Type) : Type := X → Type.

Definition U : Type :=

∀ (X : Type), (P (P X) → X) → P (P X).

Definition tau (t : P (P U)) : U :=

λ X f p, t (λ s, p (f (s X f))).

Definition sig (s : U) : P (P U) := s U tau.

Definition Delta (y : U) : Type :=

(∀ (p : P U), sig y p → p (tau (sig y))) → False.

Definition Omega : U :=

tau (λ p, ∀ (x : U), sig x p → p x).

Definition M (x : U) (s : sig x Delta) : Delta x :=

λ d, d Delta s (λ p, d (λ y, p (tau (sig y)))).

Definition D := ∀ p, (∀ x, sig x p → p x) → p Omega.

Definition R : D :=

λ p d, d Omega (λ y, d (tau (sig y))).

Definition L (d : D) : False :=

d Delta M (λ p, d (λ y, p (tau (sig y)))).

Definition false : False := L R.

If we replace unsetting universe checking with Set Universe Polymorphism.,
then the definitions check up to M. Similarly, in Agda, we can get the paradox to
check up to M by using explicit universe polymorphism.

{-# OPTIONS --cumulativity #-}

open import Agda.Primitive

data ⊥ : Set where

U : ∀ ℓ ℓ₁ ℓ₂ → Set (lsuc (ℓ ⊔ ℓ₁ ⊔ ℓ₂))

U ℓ ℓ₁ ℓ₂ = ∀ (X : Set ℓ) → (((X → Set ℓ₁) → Set ℓ₂) → X) → ((X → Set ℓ₁) → Set ℓ₂)

τ : ∀ ℓ₁ ℓ₂ → ((U ℓ₁ ℓ₁ ℓ₂ → Set ℓ₁) → Set ℓ₂) → U ℓ₁ ℓ₁ ℓ₂

τ ℓ₁ ℓ₂ t = λ X f p → t (λ x → p (f (x X f)))

σ : ∀ ℓ₁ ℓ₂ → U (lsuc (ℓ₁ ⊔ ℓ₂)) ℓ₁ ℓ₂ → (U ℓ₁ ℓ₁ ℓ₂ → Set ℓ₁) → Set ℓ₂

σ ℓ₁ ℓ₂ s = s (U ℓ₁ ℓ₁ ℓ₂) (τ ℓ₁ ℓ₂)

Δ : ∀ {ℓ₁ ℓ₂} → U (lsuc (ℓ₁ ⊔ ℓ₂)) ℓ₁ ℓ₂ → Set (lsuc (ℓ₁ ⊔ ℓ₂))

Δ {ℓ₁} {ℓ₂} y = (∀ p → σ ℓ₁ ℓ₂ y p → p (τ ℓ₁ ℓ₂ (σ ℓ₁ ℓ₂ y))) → ⊥

Ω : ∀ {ℓ} → U ℓ ℓ (lsuc (lsuc ℓ))
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Ω {ℓ} = τ ℓ (lsuc (lsuc ℓ)) (λ p → (∀ x → σ ℓ ℓ x p → p x))

M : ∀ {ℓ} x → σ (lsuc ℓ) ℓ x (Δ {ℓ} {ℓ}) → Δ {lsuc ℓ} {ℓ} x

M {ℓ} _ 𝟚 𝟛 = 𝟛 Δ 𝟚 (λ p → 𝟛 (λ y → p (τ ℓ ℓ (σ ℓ ℓ y))))

R : ∀ {ℓ} p → (∀ x → σ ℓ (lsuc (lsuc ℓ)) x p → p x) → p Ω

R {ℓ} _ 𝟙 = {! 𝟙 (Ω {ℓ}) (λ x → 𝟙 (τ ℓ ℓ (σ ℓ ℓ x))) !}

-- Need Ω : U (lsuc (lsuc (lsuc ℓ))) ℓ (lsuc (lsuc ℓ))

-- Have Ω : U ℓ ℓ (lsuc (lsuc ℓ))

L : ∀ {ℓ} → (∀ p → (∀ x → σ ℓ (lsuc (lsuc ℓ)) x p → p x) → p Ω) → ⊥

L {ℓ} 𝟘 = {! 𝟘 (Δ {ℓ} {ℓ}) M (λ p → 𝟘 (λ y → p (τ ℓ ℓ ℓ (σ ℓ ℓ ℓ y)))) !}

-- Need Δ : U ℓ ℓ (lsuc (lsuc ℓ)) → Set ℓ

-- Have Δ : U (lsuc ℓ) ℓ ℓ → Set (lsuc ℓ)

false : ⊥

false = L {lzero} (R {lzero})

The corresponding StraTT code, too, checks up to M, as verified in the im-
plementation.35 Displacement is sufficient to handle situations in which polymor-
phism was needed.

P :0 ? → ?

P X := X → ?

U :1 ?

U := ΠX :0 ?. (P (P X) → X) → P (P X)

tau :1 P (P U) → U
tau t X f p := t (λs. p (f (s X f )))
sig :2 U1 → P (P U)
sig s := s U tau
Delta :2 P U1

Delta y := (Πp :1 P U. sig y p → p (tau (sig y))) → ⊥
Omega :3 U
Omega := tau (λp.Πx :2 U1. sig x p → p (λX . x X))

M :4 Πx :3 U2. sig1 x Delta → Delta1 x
M x s d := d Delta s (λp. d (λy. p (tau (sig y))))
D :3 ?

D := Πp :1 P U. (Πx :1 U. sig x p → p x) → p Omega

35impl/pi/Hurkens.pi (no annotations), impl/pi/HurkensAnnot.pi (all annotations)

https://github.com/plclub/StraTT/tree/main/impl/pi/Hurkens.pi
https://github.com/plclub/StraTT/tree/main/impl/pi/HurkensAnnot.pi
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The next definition D doesn’t type check, since sig takes a displaced U1 and
not a U. The type of x can’t be displaced to fix this either, since p takes an
undisplaced U and not a U1. Being stuck trying to equate two different levels
is reassuring, as conflating different universe levels is how we expect a paradox
that exploits type-in-type to operate.

A.4 Reynolds’ paradox
Our last example concerns the inconsistency of inductives which are positive,
but not strictly so, together with an impredicative universe, as described by
Coquand and Paulin-Mohring [13].36,37 We consider such a nonstrictly positive
datatype A0.

data A0 :0 ? where
MkA0 :0 ((A0 → ?) → ?) → A0

A0 has one constructor whose only argument has type (A0 → ?) → ?. The
paradox relies on an injection from the latter type to the former, and so can
be seen as a type-theoretic formulation of Reynolds’ paradox [37]; this has also
been detailed by Coquand [12]. We first define an injection f from A0 → ? to A0
below. Injectivity of both MkA0 and f are omitted; they are a crucial part of the
paradox, but are orthogonal to what fails to type check.

f :0 (A0 → ?) → A0

f x := MkA0 (λz. z = x)

Now we are in a position to define a property P similar to regularity from
Russell’s paradox above, and an element of A0 that simultaneously does and
doesn’t satisfy P.

P :1 A0 → ?

P x := NPair (A0 → ?) (λP.NPair (x = f P) (P x → ⊥))

a0 :1 A0

a0 := f P

More details are omitted, but the where the paradox fails to type check is
in trying to construct an element of P a0 using P itself as the first element of
the pair. Its level is 1, which is too high for the dependent pair, which asks for
a first component at level 0; displacing NPair will raise the level of P, which will
again make it still too high.

Impredicativity is what normally makes this paradox go through, disallowing
nonstrictly positive inductives for consistency. As StraTT is predicative, this may
permit us to have nonstrictly positive datatypes consistently; precedents include
Blanqui’s Calculus of Algebraic Constructions [6, Section 7].

36A Coq implementation has been made by Sjöberg [40].
37impl/pi/Reynolds.pi

https://github.com/plclub/StraTT/tree/main/impl/pi/Reynolds.pi
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B Exponential universe polymorphism

B.1 Coq

Set Universe Polymorphism.

Time Definition T1 : Type := Type -> Type -> Type -> Type -> Type -> Type.

Time Definition T2 : Type := T1 -> T1 -> T1 -> T1 -> T1 -> T1.

Time Definition T3 : Type := T2 -> T2 -> T2 -> T2 -> T2 -> T2.

Time Definition T4 : Type := T3 -> T3 -> T3 -> T3 -> T3 -> T3.

Time Definition T5 : Type := T4 -> T4 -> T4 -> T4 -> T4 -> T4.

Time Definition T6 : Type := T5 -> T5 -> T5 -> T5 -> T5 -> T5.

Time Definition T7 : Type := T6 -> T6 -> T6 -> T6 -> T6 -> T6.

Time Definition T8 : Type := T7 -> T7 -> T7 -> T7 -> T7 -> T7.

B.2 Lean

def T1 : Type _ := Type _ → Type _ → Type _ → Type _ → Type _ → Type _

def T2 : Type _ := T1 → T1 → T1 → T1 → T1 → T1

def T3 : Type _ := T2 → T2 → T2 → T2 → T2 → T2

def T4 : Type _ := T3 → T3 → T3 → T3 → T3 → T3

def T5 : Type _ := T4 → T4 → T4 → T4 → T4 → T4

def T6 : Type _ := T5 → T5 → T5 → T5 → T5 → T5

def T7 : Type _ := T6 → T6 → T6 → T6 → T6 → T6

def T8 : Type _ := T7 → T7 → T7 → T7 → T7 → T7
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