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Commuting Conversions and Join Points
for Call-By-Push-Value

ANONYMOUS AUTHOR(S)

Levy’s call-by-push-value (CBPV) is a language that subsumes both call-by-name and call-by-value lambda
calculi by syntactically distinguishing values from computations and explicitly specifying execution order. This
low-level handling of computation suspension and resumption makes CBPV suitable as a compiler intermediate
representation (IR), while its substitution evaluation semantics affords compositional reasoning about programs.
In particular, 𝛽𝜂-equivalences in CBPV have been used to justify compiler optimizations in low-level IRs.
However, these equivalences do not validate commuting conversions, which are key transformations in compiler
passes such as A-normalization. Such transformations syntactically rearrange computations without affecting
evaluation order, and can reveal new opportunities for inlining.
In this work, we identify the commuting conversions of CBPV, define a commuting conversion normal form
(CCNF) for CBPV, present a single-pass transformation into CCNF based on A-normalization, and prove that
well-typed, translated programs evaluate to the same result. To avoid the usual code duplication issues that
also arise with ANF, we adapt the explicit join point constructs by Maurer et al. [2017]. Our results are all
mechanized in Lean 4.

1 Introduction
Call-by-push-value (CBPV) [Levy 2003] is a programming language paradigm that syntactically
distinguishes values from computations. Explicit constructs between values and computations
encode evaluation order by marking where and when computations are suspended and resumed; as
a result, CBPV subsumes call-by-name (CBN) and call-by-value (CBV) evaluation strategies. Levy
also extends CBPV with various effects, isolating them to the computation fragment.

CBPV’s distinction of pure values from effectful computations makes it a suitable compiler inter-
mediate representation (IR) because it makes explicit many low-level considerations of compilers
such as closures and control flow. Existing work covers CBPV as an IR to compile to, compile from,
and perform compiler optimizations on.

• New [2019] draws parallels between howCBPV only binds values to variables with pushing and
popping values on the stack in stack-based typed assembly language (STAL) [Morrisett et al.
2002], showing that they have comparable low-level features. He proposes adding instruction
operations to CBPV, bringing it even closer to STAL.

• Explicit thunked computations in CBPV make it clear where closures ought to be created, and
Sullivan et al. [2023] add abstract closures and incremental closure conversion to CBPV so
that optimizations involving closure conversion can be done gradually.

• By binding all intermediate computations, CBPV makes low-level control flow explicit, but still
lends to compositional reasoning with its substitution-based evaluation semantics. Garbuzov
et al. [2018] therefore argue for using CBPV as a more compositional alternative to control
flow graph (CFG) compiler representations by showing a tight equivalence between the two.

• While CFGs don’t have a simple equational theory, Rizkallah et al. [2018] develop an equational
theory for CBPV based on 𝛽𝜂-reductions. They use it to trivially justify compiler optimizations,
such as dead branch elimination and constant folding, which would otherwise be more difficult
to justify in CFGs directly.

However, 𝛽𝜂-equational theories as developed by Rizkallah et al. [2018] and later by Forster
et al. [2019] do not validate commuting conversion compiler transformations, which syntactically
rearrange computations without affecting their evaluation order. Forster et al. list a few commut-
ing conversions in passing, but they aren’t comprehensive and aren’t framed in the context of
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2 Anon.

compilation. Such transformations are key to compilation and form part of well-known passes
such as A-normalization [Flanagan et al. 1993], which unnest computations so that control flow
is syntactically explicit, making code easier to compile further. Moreover, these transformations
can expose new opportunities for further program inlining and simplification. A known issue with
naïvely applying commuting conversions, in particular in the presence of branching computations,
is that code may be duplicated; applying many commuting conversions can then cause exponential
code bloat. Maurer et al. [2017] resolve this with explicit join point constructs.

Therefore, we look at a source-to-source transformation that applies commuting conversions
to CBPV, adapting its syntax and type system to accommodate explicit join points. Introducing
separate constructs rather than using existing ones allows us to restrict them to only where they
are needed, which can lead to more efficient, specialized compilation later on. In particular, because
closures are represented by thunks, adding join points to CBPV reinforces the intent that join
points represent local code blocks and should not be compiled to closures.

This work presents a normal form for CBPV with respect to commuting conversions, and a single-
pass transformation into this normal form using join points. We prove that this transformation is
type-preserving and evaluation-preserving: it does not change the meaning of CBPV programs.
These proofs are mechanized in Lean 4 [de Moura et al. 2015], v4.23.0-rc1. The proof development is
provided in the supplementary materials; definitions and theorems in this paper are accompanied
by their corresponding file in the CBPV directory and name in the file within brackets. In the next
section, we give an overview of the language, the transformation, and its motivation, leading to the
following contributions.

• We identify a subset of CBPV that is normal with respect to all commuting conversions.
To this subset, we add join point and jump constructs, and design a type system enforcing
non-escaping join points and tail-only jumps. ↪ Section 3

• We define a single-pass transformation from CBPV into our extended normal form, using joins
and jumps to avoid duplicating computations. This transformation preserves well-typedness,
proven straightforwardly by induction. ↪ Section 4

• We show that the transformation preserves evaluation behaviour: a closed term returning
a value with no thunks and its transformation must return the same terminal value. This is
proven via a logical equivalence on terms, and requires showing that commuting conversions
are logically equivalent. ↪ Section 5

We discuss some other program equivalences and future work in Section 6, and compare with
related work in Section 7.

2 Overview
The core ideas of this paper begin with the thesis that CBPV [Levy 2003] is suitable as a compiler
IR because it represents control flow explicitly. In particular, it subsumes both CBN and CBV
semantics: compiling the same lambda calculus term with the CBN or CBV compilation strategy
yields different CBPV terms whose execution mirrors that of the original evaluation strategy.

v,w ∷= x ∣ ( ) ∣ inl v ∣ inr v ∣ {m} (values)
m, n ∷= v! ∣ 𝜆x .m ∣ n v ∣ ⟨m,m⟩ ∣ fst n ∣ snd n ∣ return v (computations)

∣ let x ← n in m ∣ case v of {inl x ⇒m; inr y ⇒m}

Fig. 1. Syntax of call-by-push-value values and computations

CBPV syntactically distinguishes values and computations, listed in Figure 1, using explicit thunks
to turn suspended computations into values and explicit returns to embed values into computations,
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The CBN and CBV translations use thunks in different ways to enforce when computation occurs.
Alongside the thunk and return constructs, we include the unit value, value sums, functions, and
computation pairs.1 In examples to follow, we also use boolean conditionals if… then… else… as
syntactic sugar for case expressions on unit sums.

As an example of the way CBN and CBV translations differ, consider the lambda calculus term
(𝜆x . x) ((𝜆y. y) z), which translates to the following two CBPV terms.
CBN (𝜆𝑥. x!) {(𝜆𝑦. y!) {z!}}
CBV let 𝑓 ← return {𝜆𝑥. return x} in let 𝑎 ← (let 𝑔 ← return {𝜆𝑦. return y} in g! z) in f ! a
While both terms evaluate to the same final value z, their evaluation sequences are different. In

the CBN translation, function arguments are thunked ({𝜆x . return x}) and passed wholesale, then
forced (f !) as they are needed. In the CBV translation, the function and the argument are evaluated
in order before carrying out the function application, using let bindings to express the explicit
sequencing. First 𝑓 is evaluated, followed by 𝑔, then 𝑎, before the final application occurs.

Even though translating to CBPV has made control flow explicit, computations may still be
arbitrarily nested, while hides some compiler optimizations. We look at commuting conversions
next to handle such computations.

2.1 Commuting conversions
Commuting conversions are syntactic transformations that swap nested eliminators while pre-
serving evaluation order. An important benefit of performing commuting conversions is that it
exposes inlining opportunities — that is, subexpressions that can be 𝛽-reduced to simplify code.
For instance, we can commute a let-bound conditional by pushing the outer let expression into the
inner conditional to reveal direct bindings of returned values.

let 𝑏 ← (if v then return false else return w) in m

⟹ if v then (let 𝑏 ← return false in m) else (let 𝑏 ← return w in m) [1]
Now we may choose to inline false inside of m in place of 𝑏 and simplify the then branch. We

may also choose not to inline w in the else branch if it happens that w is a particularly large value
we don’t want to duplicate. The inlining optimization wouldn’t have been possible without the
commutation, and is a well-known technique [Maurer et al. 2017].

Following Maurer et al. [2017], we define commuting conversions as all transformations that
push elimination forms inside of tail positions, i.e. the bodies of let expressions and the branches of
case expressions. Equation 1 pushes let bindings into conditionals; as shown below, we can also
push let bindings into other let bindings, as well as function applications into let bindings and
conditionals, to expose those inlining opportunities.

let x ← (let y ← n in return v) in m ⟹ let y ← n in (let x ← return v in m) [2]
(let x ← n in 𝜆y.m) v ⟹ let x ← n in (𝜆y.m) v [3]

(if w then (𝜆x .m1) else (𝜆x .m2)) v ⟹ if w then (𝜆x .m1) v else (𝜆x .m2) v [4]
Another benefit of commuting conversions is that they unnest expressions, moving multiple

steps of computation out of evaluation contexts, which brings them closer to lower-level code.
Commuted code is easier to compile because control flow follows the shape of the syntax. In
Equation 2, finding the next computation to execute on the left-hand side requires traversing into
the x binding, then evaluating the y binding, and finally popping back out to evaluate the body m.

1 For simplicity, we omit value pairs, which are present in Levy’s original CBPV; they are interesting in our setting because
the eliminator is pattern matching, but we already have pattern matching on value sums to consider.
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4 Anon.

In contrast, the right-hand side makes it explicit that we first evaluate the y binding, then the x
binding, then the body.

This sequential nature of commuting conversions resembles the A-normalization compiler pass
for the lambda calculus into A-normal form (ANF) because commuting conversions are part of the
A-reductions that characterize ANF [Flanagan et al. 1993]. A-normalization makes control flow
syntactically explicit by binding intermediate computations and by sequentializing computations.
Translations from the lambda calculus to CBPV already bind intermediate computations, so what
remains is to sequentialize them via commuting conversions. Rather than performing commuting
conversions one by one, which examines the whole program each time, we present a single-pass
transformation into commuting conversion normal form (CCNF) in Section 4 that resembles the
usual single-pass transformation into ANF.

n ∷= v! ∣ 𝜆x .m ∣ n v ∣ return v ∣ ⟨m,m⟩ ∣ fst n ∣ snd n (tail-free computations)
m ∷= 𝑛 ∣ let x ← n in m ∣ case v of {inl x ⇒m1; inr y ⇒m2} (configurations)

Fig. 2. Commuting conversion normal form of computations

In ANF, terms are divided into values, computations, and configurations, where computations are
a subset of configurations that don’t include let expressions and conditionals (or case expressions
generally). Figure 2 makes the same distinction for CBPV, where values remain unchanged; to avoid
confusion, we also call the latter configurations, while we call the former tail-free computations,
which are both subsets of CBPV computations. Because commuting conversions push computations
only into tail positions, new opportunities for inlining only occur in m positions, so performing
those new inlinings won’t violate CCNF.

2.2 Join points
Generalizing Equation 1 to case expressions and arbitrary computations, the corresponding com-
muting conversion pushes let bindings into case branches.

let x ← (case v of {inl y1 ⇒ n1; inr y2 ⇒ n2}) in m

⟹ case v of {inl y1 ⇒ (let x ← n1 in m); inr y2 ⇒ (let x ← n1 in m)} [5]
There is a code optimization issue with Equations 1 and 5: the let body m gets duplicated across

the branches. If the size of m is very large, this can cause code bloat, especially if the branches
contain further case expressions. The usual solution for the lambda calculus with let expressions is
to let-bind a closure containing m to be called at the end of the branch, also known as a join point.
Similarly, in CBPV, we can bind a thunked function to be forced and applied.

let x ← (case v of {inl y1 ⇒m1; inr y2 ⇒m2}) in m

⟹ let z ← return {𝜆x .m} in [6]
case v of {inl y1 ⇒ (let x ← m1 in z! x); inr y2 ⇒ (let x ← m2 in z! x)}

To the next compiler passes that see this code, the thunk is a value that may capture variables
and escape its scope, so somewhere along the pipeline the thunk will be converted into a closure
and lifted out, and z! x will correspond to a function call. However, we know from the commuting
conversion that the thunk will never escape its scope, since it’s never passed to a function or stored
in another thunk; all that we want to do is jump to them within and pop an argument x . Its purpose
is only to join up branches of a computation, and should be compiled to a local code block.

Inspired by Maurer et al. [2017], who tackle the same issue with commuting conversions in
System F with case expressions, we add explicit join point and jump constructs to CBPV in Figure 3.
They are accompanied by typing rules that restrict where join points may be used, which we cover
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𝑚 ∷= ⋯ ∣ join j x = m in m ∣ jump j v (join points, jumps)

Fig. 3. Extended configurations

in Section 3. In contrast to op. cit., our jumps aren’t tail-free computations and may only appear in
tail position, which simplifies both the evaluation semantics and our proofs. Section 7 discusses
why we can make this restriction.

Coming back to the commuting conversion of Equation 6, we use join points in place of the bound
thunk, jumping to them after binding the branches. Let expressions only bind a single variable, so
we only need join points and jumps that take a single argument.

let x ← (case v of {inl y1 ⇒m1; inr y2 ⇒m2}) in m

⟹ join j x = m in [7]
case v of {inl y1 ⇒ (let x ← m1 in jump j x);

inr y2 ⇒ (let x ← m2 in jump j x)}

3 CBPV with Join Points
While Section 2 presents the source (plain CBPV) and target (CCNF CBPV with join points)
languages with distinct syntactic forms, in our mechanization (and thus our technical presentation
here), we use a single unified syntax and treat CC-normalization as a source-to-source translation,
showing a posteriori in Section 4 that the output of the translation satisfies Figures 2 and 3. In
Section 5, we reason about equivalence between a CBPV term and its translation, which requires
both sides of the equivalence to belong to the same syntactic category.

A ∷= ⊤ ∣ A + A ∣ U B (value types)
B ∷= A→ B ∣ B & B ∣ F A (computation types)

v,w ∷= x ∣ ( ) ∣ inl v ∣ inr v ∣ {m} (values)
m, n ∷= v! ∣ 𝜆x .m ∣ n v ∣ ⟨m,m⟩ ∣ fst n ∣ snd n ∣ return v (computations)

∣ let x ← n in m ∣ case v of {inl x ⇒m; inr y ⇒m}
∣ join j x = m in m ∣ jump j v

Fig. 4. Syntax of value, computations, and their types [Syntax:ValType,ComType,Val,Com]

Figure 4 lists the full syntax of values and computations, along with value types and computation
types. The new syntactic forms not found in plain CBPV are highlighted in salmon. For clarity,
although the mechanization uses de Bruijn indexing and simultaneous substitutions, we present
the syntax here in nominal form, with v{x ↦ w} , m{x ↦ w} denoting single (capture-avoiding)
substitution of x for w in v and m, respectively. The syntax and related definitions in the mecha-
nization are also intrinsically well scoped with respect to jump variables, which we omit here, and
freely use jump well-scopedness throughout the proofs.

3.1 Evaluation semantics
The purpose of join points is best explained by what they do; their single-step evaluation rules
are listed in Figure 5, alongside rules for the usual CBPV constructs. We write m⇝∗ m′ for the
reflexive, transitive closure of evaluation. The names of the rules involving join points and jumps
not found in plain CBPV are highlighted in salmon.

https://github.com/anonymous/CBPV/tree/join/CBPV/Syntax.lean
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m⇝m

{m}! ⇝m (E-force)
(𝜆x .m) v ⇝m{x ↦ v} (E-app)

fst ⟨m1,m2⟩ ⇝m1 (E-fst)
snd ⟨m1,m2⟩ ⇝m2 (E-snd)

let x ← return v in m⇝m{x ↦ v} (E-ret)
case (inl v) of {inl x ⇒m1; inr y ⇒m2} ⇝m1{x ↦ v} (E-left)
case (inr v) of {inl x ⇒m1; inr y ⇒m2} ⇝m2{y ↦ v} (E-right)

join j x = m in jump j v ⇝m{x ↦ v} ( E-jump )

join j′ x = m′ in jump j v ⇝ jump j v ( E-skip )

join j′ x = m′ in tm⇝ tm ( E-drop )

m1 ⇝m2

E[m1] ⇝ E[m2]
E-cong

m1 ⇝m2

join j x = m in m1 ⇝ join j x = m in m2
E-join

where E ∷= let x ← � in m ∣ � v ∣ fst� ∣ snd� (evaluation contexts)
tm ∷= 𝜆x .m ∣ return v ∣ ⟨m,m⟩ (terminal computations)

Fig. 5. Evaluation rules for computations [Evaluation:Eval,nf]

The usual rules E-force through E-right say that thunks get forced to their inner computations,
applied functions substitute in their arguments, the first and second components of a computational
pair can be projected out, and case analysis on the left or right injections reduce to the left or right
branches, respectively. Rule E-cong states that evaluation may occur under evaluation contexts E,
which are elimination forms with holes in scrutinee position. We exclude join expressions from
evaluation contexts because we later use E to define our set of commuting conversions, which
don’t commute into join expressions.

Join expressions evaluate under a context join j x = m in � in rule E-join. The inner evaluation
is done when it reaches a jump or a terminal computation tm, which are computation introduction
forms. If the body of the join expression is a jump to the bound join point, then the value jumped
with is substituted into the join point in rule E-jump. If it jumps to a join point further outward,
then this inner join point binding is discarded in rule E-skip. The binding is also discarded when a
terminal is reached in rule E-drop.

To illustrate, consider the following reduction sequence for three join points. Intuitively, we
jump to j3 which jumps to j1 which is m1, so we end up at m1{x ↦ v}; the reductions that apply to
get there are first to jump, then to skip, then to jump.

join j1 x = m1 in join j2 x = m2 in join j3 x = jump j1 x in jump j3 v

⇝ join j1 x = m1 in join j2 x = m2 in jump j1 v (E-jump)
⇝ join j1 x = m1 in jump j1 v (E-skip)
⇝m1{x ↦ v} (E-jump)

https://github.com/anonymous/CBPV/tree/join/CBPV/Evaluation.lean
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This is in fact the only sequence of reductions, because evaluation is deterministic. If we define
normalization as evaluation to a terminal,2 then normalization is deterministic as well, and multi-
step evaluations always evaluate to the same terminal.

Lemma 3.1 (Determinism of evaluation). [Evaluation:Eval.det]
If m⇝m1 and m⇝m2, then m1 = m2.

Definition 3.2 (Normalization). [Evaluation:Norm]
m normalizes to tm, written as m ⇓ tm , if m⇝∗ tm.

Corollary 3.3 (Determinism of normalization). [Evaluation:Norm.join]
If m ⇓ tm1 and m ⇓ tm2, then tm1 = tm2.

Corollary 3.4 (Merging). [Evaluation:Evals.merge] If m ⇓ tm and m⇝∗ m′, then m′ ⇓ tm.

3.2 Typing rules
By adding join points, we now have two different forms of bindings: value variables x bind values
and have value types, while jump variables j bind join points, which are computations of type B
that take some value argument of type A. As the bindings have different types, we use two different
typing contexts: Γ ∷= ⋅ ∣ Γ, x ∶ A for value contexts, and Δ ∷= ⋅ ∣ Δ, j ∶ A 1B for jump contexts.

Without the jump contexts, rules T-var through T-snd are the usual typing rules for the values
and computations of plain CBPV. When we include jump contexts, they are either threaded through
rules unchanged, or they are explicitly empty in some premises. In particular, joins represent
local blocks of code that are jumped to with the current environment, and aren’t closures. The
computation inside of a thunk in rule T-thunk needs to be closed with respect to jump variables to
prevent jumps from escaping their local scopes.

Furthermore, we restrict jumps to tail positions in contrast to Maurer et al. [2017], who allow
jumps in scrutinee positions. They require type polymorphism to assign arbitrary types to jumps
so that type safety isn’t violated. We propagate the jump context only in premises with the same
type so that jumping never changes the type. Although this restricts jumps to only tail positions, it
exactly captures what CC-normalization needs: the ability to jump to another computation at the
very end of the previous one. As a result, the evaluation semantics are simpler and the metatheory
is cleaner. To enforce this restriction, the scrutinee premises of rules T-app, T-let, T-fst, and T-snd
require empty jump contexts, while the tail premises of rules T-let and T-case may contain jumps.

Additionally, we don’t allow computation constructors rules T-fun and T-pair to contain jumps,
which prevents stuck terms such as fst (join j x = m in ⟨jump j v, jump j w⟩). While the evaluation
rules can be extended so that this computation reduces to m{x ↦ v}, doing so again complicates
both the evaluation semantics and the metatheory, and join points for commuting conversions
don’t require such flexibility.

In rule T-join, we extend Δ with a join declaration when checking the body m2, which may
jump to the join point m1. Both have the same type B because jumping in tail position doesn’t
change the type, and rule T-jump indicates that jumping to the join point at j with a value of type
A indeed has the same B. We can then, for example, jump to a join point in only one branch of a
case expression so long as the join point has the same type as the other branch, as in the following
derivable judgement, which we typeset with a dashed bar.

Γ ⊢ v ∶ A1 + A2 Γ, x ∶ A1 ∣ ⋅ ⊢ m1 ∶ B Γ, y ∶ A2 ∣ ⋅ ⊢ m2 ∶ B

Γ ∣ ⋅ ⊢ join j x = m1 in case v of {inl x ⇒ jump j x ; inr y ⇒m2} ∶ B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 This is weak normalization, not strong normalization, since subterms are not normalized. We won’t consider strong
normalization, so we simply call it normalization.

https://github.com/anonymous/CBPV/tree/join/CBPV/Evaluation.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/Evaluation.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/Evaluation.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/Evaluation.lean
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Γ ⊢ v ∶ A Γ ∣ Δ ⊢ m ∶ B

T-var
x ∶ A ∈ Γ
Γ ⊢ x ∶ A

T-unit

Γ ⊢ ( ) ∶ ⊤

T-left
Γ ⊢ v ∶ A1

Γ ⊢ inl v ∶ A1 + A2

T-right
Γ ⊢ v ∶ A2

Γ ⊢ inr v ∶ A1 + A2

T-thunk
Γ ∣ ⋅ ⊢ m ∶ B

Γ ⊢ {m} ∶ U B

T-force
Γ ⊢ v ∶ U B

Γ ∣ Δ ⊢ v! ∶ B

T-fun
Γ, x ∶ A ∣ ⋅ ⊢ m ∶ B

Γ ∣ Δ ⊢ 𝜆x .m ∶ A→ B

T-app
Γ ∣ ⋅ ⊢ n ∶ A→ B Γ ⊢ v ∶ A

Γ ∣ Δ ⊢ n v ∶ B

T-ret
Γ ⊢ v ∶ A

Γ ∣ Δ ⊢ return v ∶ F A

T-let
Γ ∣ ⋅ ⊢ n ∶ F A Γ, x ∶ A ∣ Δ ⊢ m ∶ B

Γ ∣ Δ ⊢ let x ← n in m ∶ B

T-case
Γ ⊢ v ∶ A1 + A2 Γ, x ∶ A1 ∣ Δ ⊢ m1 ∶ B Γ, y ∶ A2 ∣ Δ ⊢ m2 ∶ B

Γ ∣ Δ ⊢ case v of {inl x ⇒m1; inr y ⇒m2} ∶ B

T-pair
Γ ∣ ⋅ ⊢ m1 ∶ B1 Γ ∣ ⋅ ⊢ m2 ∶ B2

Γ ∣ Δ ⊢ ⟨m1,m2⟩ ∶ B1 & B2

T-fst
Γ ∣ ⋅ ⊢ n ∶ B1 & B2
Γ ∣ Δ ⊢ fst n ∶ B1

T-snd
Γ ∣ ⋅ ⊢ n ∶ B1 & B2
Γ ∣ Δ ⊢ snd n ∶ B2

T-join
Γ, x ∶ A ∣ Δ ⊢ m1 ∶ B Γ ∣ Δ, j ∶ A 1B ⊢ m2 ∶ B

Γ ∣ Δ ⊢ join j x = m1 in m2 ∶ B

T-jump
j ∶ A 1B ∈ Δ Γ ⊢ v ∶ A

Γ ∣ Δ ⊢ jump j v ∶ B

Fig. 6. Typing rules for values and computations [Typing:ValWt,ComWt]

The important typing lemmas that we need are weakening lemmas for both value and jump
contexts. In the mechanization, they are proven by induction on the typing derivation via renaming
lemmas; for now, we ignore issues of renaming de Bruijn indices, as they are standard.

Lemma 3.5 (Weakening (value contexts)). [Typing:wtWeakenVal,wtWeakenCom]
Suppose x is not free in v ,m. If Γ1, Γ2 ⊢ v ∶ A, then Γ1, x ∶ A′, Γ2 ⊢ v ∶ A, and if Γ1, Γ2 ∣ Δ ⊢ m ∶ B,
then Γ1, x ∶ A, Γ2 ∣ Δ ⊢ m ∶ B.

Lemma 3.6 (Weakening (jump contexts)). [Typing:wtWeakenJ]
Suppose j is not free in m. If Γ ∣ Δ1, Δ2 ⊢ m ∶ B, then Γ ∣ Δ1, j ∶ A 1B′, Δ2 ⊢ m ∶ B.

4 Commuting Conversion Normalization
In Section 2, we listed four examples of commuting conversions as Equations (1) to (4). The general
formulation commutes evaluation contexts with tail contexts, given below, which are elimination
forms with holes where computations continue, which in our case are the bodies of let expressions
and the branches of case expressions. We can think of computations with a tail as those that have
a “next step”. As with evaluation contexts, we exclude join point expressions from tail contexts
because our source language is plain CBPV with no join points or jumps.

L ∷= let x ← n in � ∣ case v of {inl x ⇒�; inr y ⇒�} (tail contexts)

https://github.com/anonymous/CBPV/tree/join/CBPV/Typing.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/Typing.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/Typing.lean
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v ∷= x ∣ ( ) ∣ inl v ∣ inr v ∣ {m} (values)
n ∷= v! ∣ 𝜆x .m ∣ n v ∣ return v ∣ ⟨m,m⟩ ∣ fst n ∣ snd n (tail-free computations)
m ∷= 𝑛 ∣ let x ← n in m ∣ case v of {inl x ⇒m1; inr y ⇒m2} (configurations)

∣ join j x = m1 in m2 ∣ jump j v

Fig. 7. Commuting conversion normal form with join points [CCNF:isVal,isCom,isCfg]

The commuting conversions we consider can then be stated as E[L[m]] ⇒ L[E[m]]. Informally,
they unnest code because they move evaluation contexts into the “next step”, and they expose
inlining opportunities because these evaluation contexts are no longer blocked by tail contexts
that still have a “first step” to compute. The shape of commuting conversions inform the shape
of the normal form of computations, reproduced in Figure 7, where tail-free computations n are
computations that don’t contain tail contexts, and configurations m are all computations that
don’t contain tail contexts in scrutinee positions, i.e. where holes appear in evaluation contexts. By
inspection, CCNF is indeed normal with respect to commuting conversions because no ms appear
in ns, and therefore there must be no more commuting conversions to do.

To transform a plain CBPV program to one in CCNF, we follow Flanagan et al. [1993] and define
a compiler using a continuation K , whose forms are given below. As usual, it can be the empty
continuation �, or it can be the let continuation let x ← � in m: a let expression is compiled by
first translating the let-bound expression, then binding its result to x , and finally continuing on
with a configuration m.

K ∷= � ∣ let x ← � in m ∣ K ∷ k k ∷= � v ∣ fst� ∣ snd� [CCNF:K]
However, we have three more continuation forms corresponding to each of the remaining three

evaluation contexts: application, first projection, and second projection. They are needed because
in contrast to ANF for the lambda calculus, functions and computation pairs are computations
and not values, so they can’t be let-bound and their elimination forms can take arbitrary tail-free
computations. The mutual definitions of the translation of values JvK and computations JmKK in
Figure 8 show how they are used; we delay the translation of case expressions for the moment.

The translation of computations takes a continuation as a second argument, representing the rest
of the computation that expects the result of the translated computation. The translation of values
is directly recursive on the term, with the translation of thunks being the thunk of the translated
computation using the empty continuation, since there’s no computation left to do inside the thunk.

JxK ≔ x

J( )K ≔ ( )
Jinl vK ≔ inl JvK
Jinr vK ≔ inr JvK
J{m}K ≔ {JmK�}

(a) Translation of values [CCNF:CCval]

Jv!KK ≔ K[JvK!]
Jreturn vKK ≔ K[return JvK]

J𝜆x .mKK ≔ K[𝜆x . JmK�]
J⟨m1,m2⟩KK ≔ K[⟨Jm1K�, Jm2K�⟩]

Jm vKK ≔ JmK(K ∷� v)
JfstmKK ≔ JmK(K ∷ fst�)

JsndmKK ≔ JmK(K ∷ snd�)
Jlet x ← m1 in m2KK ≔ Jm1K(let x ← � in Jm2KK)

(b) Translation of computations [CCNF:CCval]
Fig. 8. Commuting conversion normalization translation (excluding case)

https://github.com/anonymous/CBPV/tree/join/CBPV/CCNF.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/CCNF.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/CCNF.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/CCNF.lean
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10 Anon.

(let x ← � in m)[n] ≔ let x ← n in m (K ∷ fst�)[n] ≔ K[fst n] �[n] ≔ n

(K ∷� v)[n] ≔ K[n v] (K ∷ snd�)[n] ≔ K[snd n]

Fig. 9. Plugging a computation in a continuation [CCNF:plug]

To define the translation of computations, we need a plugging operation K[n] that collapses the
stack of ks in the continuation and replaces the final hole � by the given computation n, defined
in Figure 9. Although the operation is defined over all computations, as the holes only appear in
n positions, we can only plug tail-free computations into continuations if we want to produce a
configuration. This is the case for the translations of forcing thunks, returning values, functions,
and computation pairs: we translate their subterms—using empty continuations if needed, since we
don’t commute into introduction forms—and plug them directly into the continuation. (Section 6.3
discusses why we don’t commute.)

In the translation of let expressions, the evaluation order would first compute m1, then m2,
followed by whatever computation remains in K . Therefore, we translatem1 using a let continuation
that represents binding the result of m1 to x then running the translation of m2. For function
applications and pair projections, we translate the subterm, which we expect to yield a function or
a pair, under the continuation extended with application or projection, respectively.

To see how the translation yields CCNFs, we can look at how they act on the left-hand side of
the commuting conversions in Equations 2 and 3, assuming that n is already in CCNF, and using
the fact that JnKK = K[n].

Jlet x ← (let y ← n in return v) in mK� (Equation 2)
= Jlet x ← n in return vK(let y ← � in JmK�) (let)
= JnK(let x ← � in Jreturn vK(let y ← � in JmK�)) (let)
= (let x ← � in (let y ← � in JmK�)[return JvK])[n] (n, ret)
= let x ← n in (let y ← return JvK in JmK�) (plug)
J(let x ← n in 𝜆y.m) vK� (Equation 3)
= Jlet x ← n in 𝜆y.mK(� JvK) (app)
= JnK(let x ← � in J𝜆y.mK(� JvK)) (let)
= (let x ← � in (� JvK)[𝜆y. JmK�])[n] (n, fun)
= let x ← n in (𝜆y. JmK�) JvK (plug)

Branching and join points. The naïve translation of conditionals duplicates the continuation:
Jif v then m1 else m2KK = if JvK then Jm1KK else Jm2KK .

If K only contains application and projection continuations, this is the desired translation. From
fst (if v then ⟨m1,m2⟩ else n) we get if v then fst ⟨m1,m2⟩ else fst n, whose true branch can then
be inlined. It doesn’t make sense to jump to a join point that performs the projection, since it would
make the inlining opportunity harder to find, and require unnecessarily thunking the computation
pair to pass it to the join point.

If the continuation is let x ← � in m, duplicating it would duplicate the arbitrary configuration
m. In this case, we movem to a join point and replace it in the continuation by a jump. For example,
from let x ← (if v then return w else n) in m we get

join j x = m in (if v then (let x ← return w in jump j x) else (let x ← n in jump j x)),

https://github.com/anonymous/CBPV/tree/join/CBPV/CCNF.lean
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Jcase v of {inl x ⇒m1; inr y ⇒m2}KK ≔

⎧⎪
⎨
⎪
⎩

case JvK of {inl y ⇒ Jm1KK ; inr z ⇒ Jm2KK } if K ≡ � ∷ k1 ∷ … ∷ ki
or K ≡ (let x ← � in jump j x) ∷ k1 ∷ … ∷ ki

join j x = m in if K ≡ (let x ← � in m) ∷ k1 ∷ … ∷ ki
case JvK of {inl y ⇒ Jm1KK ′; inr z ⇒ Jm2KK ′} and m ≢ jump j x

where K ′ ≔ (let x ← � in jump j x) ∷ k1 ∷ … ∷ ki

Fig. 10. Translation of case expressions to CCNF with join points [CCNF:CCcom,K.jumpify]

and the true branch can still inline the let binding. However, we avoid creating extra join points in
nested branching. For example, from let x ← (if v then n1 else (if w then n2 else n3)) in m we get

join j x = m in

if v then (let x ← n1 in jump j x) else
(if w then (let x ← n2 in jump j x) else (let x ← n2 in jump j x)),

rather than another extraneous join point j′ x = jump j x in the outer false branch.
Figure 10 generalizes this strategy to case expressions and nested continuations; whether we

construct a join point depends on whether the continuation ends in a let continuation whose body
isn’t already a jump to a join point. In the mechanization, this is a source-to-source translation
over CBPV terms (without join points) to CBPV terms (with join points). We need to explicitly
prove that the translation indeed produces terms in CCNF, which holds by inspection, i.e. mutual
induction over the syntax.

Lemma 4.1 (Plugging preserves CCNF). [CCNF:isK.plug]
If the subterms of K are in CCNF and n is in CCNF, then K[n] is in CCNF.

Lemma 4.2 (CCNF preservation). [CCNF:isCCNF,isK.jumpify]
If the subterms of K are in CCNF, then JvK and JmKK are in CCNF.

4.1 Commuting conversion preserves typing
With Lemma 4.2, we know that the translation performs all the commuting conversions in the
directions we desire. However, this alone doesn’t guarantee that the translation preserves the
meaning of the values and computations. We say what we mean by meaning preservation in the
next section, whose proof uses typing preservation: a translated term must behave like the same
kind of term as the original term.

Γ ∣ Δ ⊢ K ∶ B1 ⇒ B2

K-let
Γ, x ∶ A ∣ Δ ⊢ m ∶ B

Γ ∣ Δ ⊢ let x ← � in m ∶ F A ⇒ B

K-app
Γ ⊢ v ∶ A Γ ∣ Δ ⊢ K ∶ B1 ⇒ B2
Γ ∣ Δ ⊢ K ∷� v ∶ (A→ B1) ⇒ B2

K-fst
Γ ∣ Δ ⊢ K ∶ B1 ⇒ B

Γ ∣ Δ ⊢ K ∷ fst� ∶ (B1 & B2) ⇒ B

K-snd
Γ ∣ Δ ⊢ K ∶ B1 ⇒ B

Γ ∣ Δ ⊢ K ∷ snd� ∶ (B1 & B2) ⇒ B

K-hole

Γ ∣ Δ ⊢ � ∶ B ⇒ B

Fig. 11. Typing rules for continuations [CCNF:wtK]

https://github.com/anonymous/CBPV/tree/join/CBPV/CCNF.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/CCNF.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/CCNF.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/CCNF.lean
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12 Anon.

To show type preservation, we first need a typing judgement for the continuations, given in
Figure 11. A continuation K having type B1 ⇒ B2 means that if the hole in K represents a missing
computation of type B1, then K with its hole plugged in would be a computation of type B2.
Consequently, we can show that plugging preserves typing, which is used in the proof of type
preservation. We also need an inversion lemma for continuations that end in let continuations.

Lemma 4.3 (Plugging preserves typing). [CCNF:wtK.plug]
If Γ ∣ Δ ⊢ K ∶ B1 ⇒ B2 and Γ ∣ ⋅ ⊢ n ∶ B1, then Γ ∣ Δ ⊢ K[n] ∶ B2.

Proof. By induction on the typing derivation of K , using Lemma 3.6 in the K-hole case. �

Lemma 4.4 (Let continuation inversion). [CCNF:wtK.jumpify] IfK = (letx ← � in m)[k1] … [ki]
and Γ ∣ Δ ⊢ K ∶ B1 ⇒ B2, then there exists some A such that Γ ∣ Δ, j ∶ A 1B2 ⊢ K ′ ∶ B1 ⇒ B2 and
Γ, x ∶ A ∣ Δ ⊢ m ∶ B2, where K

′ = (let x ← � in jump j x)[k1] … [ki].

Proof. By induction on the typing derivation of K . �

Lemma 4.5 (Type preservation). [CCNF:preservation] Suppose v and m are plain CBPV terms
(and thus have no join points or jumps). If Γ ⊢ v ∶ A, then Γ ⊢ JvK ∶ A, and if Γ ∣ ⋅ ⊢ m ∶ B1 and
Γ ∣ Δ ⊢ K ∶ B1 ⇒ B2, then Γ ∣ Δ ⊢ JmKK ∶ B2.

Proof. By mutual induction on the typing derivations of v and m, using Lemma 4.3 in the
T-force, T-fun, and T-pair cases. In the T-case case, if K is a let continuation, use Lemma 4.4 and
rule T-join to construct the derivation. �

5 Commuting Conversion Normalization Preserves Evaluation
Normalizing by all commuting conversions shouldn’t affect the meaning of a program. Formally,
if a closed computation evaluates to a returned value, then its translation runs to the same value.
Because we don’t evaluate inside of thunks, we consider only computations that return ground
values, which are those of type T ∷= ⊤ ∣ T + T . Otherwise, a thunk and its CCNF are values that
don’t evaluate any further, but aren’t necessarily syntactically equal.

Theorem 5.1. Given m such that ⋅ ∣ ⋅ ⊢ m ∶ F T , if m ⇓ return v , then JmK� ⇓ return v .

We prove this property as a corollary of a logical equivalence between a computation and its
translation. This machinery is required because the simpler of method using a simulation argument,
such as the following statement, unfortunately doesn’t work.

Falsehood 5.1 (Simulation). If m⇝ n then JmK�⇝∗ JnK�.

Counterexample. Suppose we have tail-free computations n1, n2 and configurationm. Consider
the term let x ← {let y ← n1 in n2}! in m, which reduces to let x ← (let y ← n1 in n2) in m. The
left-hand side translates to itself, since it’s already in CCNF, while the right-hand side translates
to let y ← n1 in let x ← n2 in m. By transitivity, it remains to show that let x ← (let y ← n1 in
n2) in m ⇝∗ let y ← n1 in let x ← n2 in m, but there is no such reduction sequence since there is
no reduction step that commutes let bindings. �

However, if we know that n1 in the counterexample reduces to some return v, then we can
deduce that the right side and its translation must reduce to let x ← n2{y↦ v} in m, which gives us
an equivalence between the original term and its translation. If our counterexample is well typed,
then a logical equivalence gives us precisely the required information that subterms must reduce
to canonical terms such as returned values.

https://github.com/anonymous/CBPV/tree/join/CBPV/CCNF.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/CCNF.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/CCNF.lean
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To handle translations with arbitrary translation continuation K , we generalize to proving that a
translation JmKK must be equivalent to plugging the computation back in as K[m]. The proof of
Theorem 5.1 then proceeds by:

1. Defining a standard logical equivalence over CBPV types;
2. Closing over term and join point contexts with a semantic equivalence;
3. Proving the fundamental theorem of this equivalence, namely that well-typed terms are

semantically equivalent to themselves;
4. Showing that well-typed commuting conversions are in the semantic equivalence;
5. Defining semantic equivalence of continuations and proving its fundamental theorem;
6. Showing that plugging continuations respects semantic equivalence; and finally,
7. Proving that given a well-typed computation and a well-typed continuation, plugging the

continuation with the computation is equivalent to translating the computation using the
continuation.

The theorem then holds by instantiating with the empty continuation. Section 5.1 covers step 1 to
3, Section 5.2 covers step 4, Section 5.3 covers step 5 to 6, and Section 5.4 covers step 7.

5.1 Logical equivalence and the fundamental theorem

(v,w) ∈ JAK (m, n) ∈ JBK (m, n) ∈ JBK∗

(( ), ( )) ∈ J⊤K
(inl v, inl w) ∈ JA1 + A2K iff (v,w) ∈ JA1K
(inr v, inr w) ∈ JA1 + A2K iff (v,w) ∈ JA2K

({m}, {n}) ∈ JU BK iff (m, n) ∈ JBK∗

(return v, return w) ∈ JF AK iff (v,w) ∈ JAK

(𝜆x .m, 𝜆x . n) ∈ JA→ BK iff ∀v,w. (v,w) ∈ JAK ⇒ (m{x ↦ v}, n{x ↦ w}) ∈ JBK∗

(⟨m1,m2⟩, ⟨n1, n2⟩) ∈ JB1 & B2K iff (m1, n1) ∈ JB1K∗ ∧ (m2, n2) ∈ JB2K∗

(m, n) ∈ JBK∗ iff ∃tm1, tm2. (m ⇓ tm1) ∧ (n ⇓ tm2) ∧ (tm1, tm2) ∈ JBK

Fig. 12. Logical equivalence of terms over CBPV types [Equivalence:𝒱 ,𝒞 , ℰ ]

Our logical relation relates two closed values or computations at a value or computation type,
respectively. We equivalently say that a pair of terms are in the interpretation of some type.
Following the presentation by Forster et al. [2019], we use an auxiliary interpretation JBK∗ which
relates computations that normalize to terminals related at B. It follows that if (m, n) ∈ JBK, then
(m, n) ∈ JBK∗.

The interpretations, defined by mutual recursion over types, are otherwise standard: unit values
are related, left and right injections are related when their values are related at the respective left
or right type, thunks are related when their computations are related, functions are related when
their bodies are related for all related arguments, and pairs are related when their first and second
components are respectively related.

The first property we need of logical equivalence is backward closure under evaluation of JBK∗,
which holds by unfolding its definition and transitivity of evaluation. A helpful corollary adds
congruence under join points.

Lemma 5.2 (Backward closure). [Equivalence:bwds]
If m1 ⇝∗ m2 and n1 ⇝∗ n2 and (m2, n2) ∈ JBK∗, then (m1, n1) ∈ JBK∗.

https://github.com/anonymous/CBPV/tree/join/CBPV/Equivalence.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/Equivalence.lean
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14 Anon.

(𝜎 , 𝜏 ) ∈ JΓK (𝜑, 𝜓 ) ∈ JΔK

S-nil

(•, •) ∈ •

S-cons
(𝜎 , 𝜏 ) ∈ JΓK (v,w) ∈ JAK

((𝜎 , x ↦ v), (𝜏 , x ↦ w)) ∈ JΓ, x ∶ AK

J-nil

(•, •) ∈ •

J-cons
(𝜑, 𝜓 ) ∈ JΔK ∀v,w. (v,w) ∈ JAK ⇒ (joins 𝜑 in m{x ↦ v}, joins 𝜓 in n{x ↦ w}) ∈ JBK

((𝜑, j x = m), (𝜓 , j x = n)) ∈ JΔ, j ∶ A 1BK

Fig. 13. Logical equivalence of substitution maps and join stacks [Equivalence:semCtxt,semDtxt]

Lemma 5.3 (Backward closure under join points). [Equivalence:bwdsRejoin]
Ifm1⇝∗m2 and n1⇝∗n2 and (m2, n2) ∈ JBK∗, then (joinj x = m′ in m1, joinj x = n′ in m2) ∈ JBK∗,
using rules E-join and E-drop.

The second property is symmetry and transitivity, making it a partial equivalence relation over
all terms. These lemmas are proven by induction over the type and unfolding definitions.

Lemma 5.4 (Symmetry and transitivity (logical eqivalence)).
• If (v,w) ∈ JAK then (w, v) ∈ JAK. [Equivalence:𝒱 .sym]
• If (m, n) ∈ JBK then (n,m) ∈ JBK. [Equivalence:𝒞 .sym]
• If (m, n) ∈ JBK∗ then (n,m) ∈ JBK∗. [Equivalence:ℰ.sym]
• If (v1, v2) ∈ JAK and (v2, v3) ∈ JAK then (v1, v3) ∈ JAK. [Equivalence:𝒱 .trans]
• If (m1,m2) ∈ JBK and (m2,m3) ∈ JBK then (m1,m3) ∈ JBK. [Equivalence:𝒞 .trans]
• If (m1,m2) ∈ JBK∗ and (m2,m3) ∈ JBK∗ then (m1,m3) ∈ JBK∗. [Equivalence:ℰ.trans]

To work with equivalence of well-typed terms, which may be open with respect to value and
jump contexts, we need close over value and jump variables using substitution maps 𝜎 and join
stacks 𝜑, defined below. Applying a substitution map v{𝜎}, m{𝜎} corresponds to simultaneous
substitution (so order doesn’t matter in 𝜎 ). Given a join stack 𝜑 ≡ j1 x1 = m1, … , ji xi = mi , the
computation joins 𝜑 in m represents wrapping m in join points outward in, corresponding to the
term join j1 x1 = m1 in … join ji xi = mi in m (so order does matter in 𝜑).

𝜎, 𝜏 ∷= ⋅ ∣ 𝜎 , x ↦ v 𝜑, 𝜓 ∷= ⋅ ∣ 𝜑, j x = m [Rejoin:J]
We extend logical equivalence to substitution maps and join stacks, relating two of them at a

particular context. Figure 13 gives inductive rules for these logical equivalences. Rules S-nil and
S-cons are equivalent to stating that (𝜎 , 𝜏 ) ∈ JΓK holds when for all x ∶ A ∈ Γ, (𝜎(x), 𝜏 (x)) ∈ JAK
holds. Rule J-cons states that we can extend a pair of related join stacks 𝜑 and 𝜓 by join points m
and n of type A 1B when the join points themselves are related at B given arguments related at
A and closed over by 𝜑 and 𝜓 . They need to be closed over since m and n themselves may jump
to earlier join points. We can show that substitution maps and join stacks are partial equivalence
relations by induction on their derivations.

Lemma 5.5 (Symmetry and transitivity (logical eqivalence at contexts)).
• If (𝜎 , 𝜏 ) ∈ JΓK then (𝜏 , 𝜎) ∈ JΓK. [Equivalence:semCtxt.sym]
• If (𝜑, 𝜓 ) ∈ JΔK then (𝜑, 𝜓 ) ∈ JΔK. [Equivalence:semDtxt.sym]
• If (𝜎1, 𝜎2) ∈ JΓK and (𝜎2, 𝜎3) ∈ JΓK then (𝜎1, 𝜎3) ∈ JΓK. [Equivalence:semCtxt.trans]
• If (𝜑1, 𝜑2) ∈ JΔK and (𝜑2, 𝜑3) ∈ JΔK then (𝜑1, 𝜑3) ∈ JΔK. [Equivalence:semDtxt.trans]
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Using substitution maps and join stacks, we can define semantic equivalence of open terms. They
are also partial equivalence relations, which follows from Lemmas 5.4 and 5.5. In all proofs that
follow, we freely use symmetry and transitivity without explicit reference.

Definition 5.6 (Semantic equivalence of values). [Equivalence:semVal]
Values v and w are semantically equivalent under context Γ at type A, written Γ ⊨ v ∼ w ∶ A ,
when for all substitution maps (𝜎 , 𝜏 ) ∈ JΓK, (v{𝜎},w{𝜏 }) ∈ JAK holds.

Definition 5.7 (Semantic equivalence of computations). [Equivalence:semCom]
Computations m and n are semantically equivalent under contexts Γ and Δ at type B, written
Γ ∣ Δ ⊨ m ∼ n ∶ B , when for all substitution maps (𝜎 , 𝜏 ) ∈ JΓK and join stacks (𝜑, 𝜓 ) ∈ JΔK,
(joins 𝜑 in m{𝜎}, joins 𝜓 in n{𝜏 }) ∈ JBK holds.

Lemma 5.8 (Symmetry and transitivity (semantic eqivalence)).
• If Γ ⊨ v ∼ w ∶ A then Γ ⊨ w ∼ v ∶ A. [Equivalence:semVal.sym]
• If Γ ∣ Δ ⊨ m ∼ n ∶ B then Γ ∣ Δ ⊨ n ∼ m ∶ B. [Equivalence:semCom.sym]
• If Γ ⊨ v1 ∼ v2 ∶ A and Γ ⊨ v2 ∼ v3 ∶ A then Γ ⊨ v1 ∼ v3 ∶ A. [Equivalence:semVal.trans]
• If Γ ∣ Δ ⊨ m1 ∼ m2 ∶ B and Γ ∣ Δ ⊨ m2 ∼ m3 ∶ B then Γ ∣ Δ ⊨ m1 ∼ m3 ∶ B.
[Equivalence:semCom.trans]

Finally, we show the fundamental theorem of semantic equivalence: well-typed terms are seman-
tically equivalent to themselves.

Theorem 5.9 (Fundamental theorem of semantic eqivalence). [Equivalence:soundness]
If Γ ⊢ v ∶ A then Γ ⊨ v ∼ v ∶ A, and if Γ ∣ Δ ⊢ m ∶ B then Γ ∣ Δ ⊨ m ∼ m ∶ B.

Proof. By induction on the typing derivations of v andm. Letting (𝜎 , 𝜏 ) ∈ JΓK and (𝜑, 𝜓 ) ∈ JΔK,
the goal is to show that (v{𝜎}, v{𝜏 }) ∈ JAK and (joins 𝜑 in m{𝜎}, joins 𝜓 in m{𝜏 }) ∈ JBK∗ hold.

• Case T-var: Holds by (𝜎 , 𝜏 ) ∈ JΓK on the variable.
• Cases T-unit, T-left, T-right, and T-thunk: Hold by definition of the logical relation, using
the induction hypotheses on any subterms.

• Cases T-fun, T-ret, and T-prod: Hold by Lemma 5.3 with no reduction, using the induction
hypotheses on subterms.

• Cases T-app, T-fst, and T-snd: By the induction hypotheses on the scrutinee premises, they
must reduce to related functions, related first pair projections, or related second pair projections,
respectively. Then the goal holds by Lemma 5.3 on these relations, reducing by E-app, E-fst,
or E-snd, respectively.

• Cases T-let and T-case: By the induction hypotheses on the scrutinee premises, they must
reduce to related returns, related left injections, or related right injections, respectively. Then
the goal holds by Lemma 5.2 on these relations, reducing by E-ret, E-left, or E-right,
respectively.

• Case T-join: Holds by the induction hypothesis on the join expression body, extending
semantic equivalence of join stacks using the induction hypothesis on the join points.

• Case T-jump: Holds by (𝜑, 𝜓 ) ∈ JΔK on the jump variable, instantiating the join point by the
induction hypothesis on related values. �

As a corollary, we have type safety and normalization: a closed, well-typed computation never
evaluates to a stuck term, and moreover evaluates to a terminal.

Corollary 5.10 (Normalization). [Equivalence:safety] If ⋅ ∣ ⋅ ⊢ m ∶ B then ∃tm,m⇝∗ tm.

https://github.com/anonymous/CBPV/tree/join/CBPV/Equivalence.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/Equivalence.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/Equivalence.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/Equivalence.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/Equivalence.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/Equivalence.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/Equivalence.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/Equivalence.lean


736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Anon.

Γ ∣ ⋅ ⊢ let x ← n in m ∶ F A Γ, y ∶ A ∣ Δ ⊢ m′ ∶ B

Γ ∣ Δ ⊨ let y ← (let x ← n in m) in m′ ∼ let x ← n in let y ← m in m′ ∶ B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− let-let

Γ ∣ ⋅ ⊢ let x ← n in m ∶ A→ B Γ ⊢ v ∶ A

Γ ∣ Δ ⊨ (let x ← n in m) v ∼ let x ← n in (m v) ∶ B
−−−−−−−−−−−−−−−−−−−−−−−−−− let-app

Γ ∣ ⋅ ⊢ let x ← n in m ∶ B1 & B2

Γ ∣ Δ ⊨ fst (let x ← n in m) ∼ let x ← n in (fstm) ∶ B1
−−−−−−−−−−−−−−−−−−−−−−−−−−−− let-fst

Γ ∣ ⋅ ⊢ let x ← n in m ∶ B1 & B2

Γ ∣ Δ ⊨ snd (let x ← n in m) ∼ let x ← n in (sndm) ∶ B2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−− let-snd

Γ ∣ ⋅ ⊢ case v of {inl x ⇒m1; inr y ⇒m2} ∶ F A Γ, z ∶ A ∣ Δ ⊢ m ∶ B

Γ ∣ Δ ⊨ let z ← (case v of {inl x ⇒m1; inr y ⇒m2}) in m
∼ case v of {inl x ⇒ (let z ← m1 in m); inr y ⇒ (let z ← m2 in m)} ∶ B

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− case-let

Γ ∣ ⋅ ⊢ case v of {inl x ⇒m1; inr y ⇒m2} ∶ A→ B Γ ⊢ w ∶ A

Γ ∣ Δ ⊨ (case v of {inl x ⇒m1; inr y ⇒m2}) w
∼ case v of {inl x ⇒ (m1 w); inr y ⇒ (m2 w)} ∶ B

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− case-app

Γ ∣ ⋅ ⊢ case v of {inl x ⇒m1; inr y ⇒m2} ∶ B1 & B2

Γ ∣ Δ ⊨ fst (case v of {inl x ⇒m1; inr y ⇒m2})
∼ case v of {inl x ⇒ (fstm1); inr y ⇒ (fstm2)} ∶ B1

−−−−−−−−−−−−−−−−−−−−−−−−−−−− case-fst

Γ ∣ ⋅ ⊢ case v of {inl x ⇒m1; inr y ⇒m2} ∶ B1 & B2

Γ ∣ Δ ⊨ snd (case v of {inl x ⇒m1; inr y ⇒m2})
∼ case v of {inl x ⇒ (sndm1); inr y ⇒ (sndm2)} ∶ B2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−− case-snd

Fig. 14. Semantic equivalence of commuting conversions
[Commutation:letLet,appLet,fstLet,sndLet,letCase,appCase,fstCase,sndCase]

5.2 Semantic equivalence of commuting conversions
As the translation normalizes with respect to all commuting conversions, to show that semantic
equivalence of the translation, naturally we need to show semantic equivalence of the commuting
conversions. Recall that with four evaluation contexts and two tail contexts, there are eight total
commuting conversions to handle, each assuming well-typedness of various subterms. We present
them as derivable rules in Figure 14 for legibility.

The general strategy to proving these is by using the Theorem 5.9 on the typing derivations,
extracting a logical equivalence for the desired type, applying Lemma 5.2 or Lemma 5.3, then using
the evaluation rules and Corollary 3.4 to find the correct evaluation sequence from the left and
right sides of the lemma statement to the respective sides of the extracted logical equivalence. We
step through only the proof of let-app as a representative case.

https://github.com/anonymous/CBPV/tree/join/CBPV/Commutation.lean
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Proof. Because substitution maps and join stacks don’t play much of a role, we mostly ignore
them here. The goal is then to show that (let x ← n in m) v is equivalent to let x ← n in (m v),
knowing that all subterms are well typed. By Theorem 5.9, we have that n reduces to some returnw ,
and that m{x ↦ w} reduces to some 𝜆y.m′. Then we know that the right-hand side reduces by
E-ret and E-app to m′{y ↦ v}. We also have that let x ← n in m reduces to m{x ↦ w} by E-ret.
Then we know that the left-hand side reduces by E-app also tom′{y↦ v}. Therefore, by Lemma 5.3,
the left- and right-hand sides are equivalent. �

Although our translation doesn’t involve commuting join points, we do require a corresponding
semantic equivalence to unnest join points, stated in Figure 15.
join-join
Γ, x1 ∶ A1 ∣ Δ ⊢ m1 ∶ B Γ, x2 ∶ A2 ∣ Δ, j1 ∶ A1 1B ⊢ m2 ∶ B Γ ∣ Δ, j2 ∶ A2 1B ⊢ m ∶ B

Γ ∣ Δ ⊨ join j2 x2 = (join j1 x1 = m1 in m2) in m ∼ join j1 x1 = m1 in join j2 x2 = m2 in m ∶ B
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 15. Semantic equivalence of commuting join points [Commutation:joinJoin]

On the right-hand side, m can’t directly jump to j1, since it isn’t in scope in its typing, so if m
doesn’t jump to j2, then both join points can be dropped. In the mechanization, this isn’t so easy
to prove, since we’re using de Bruijn indexed jump variables. Consequently, m must be explicitly
weakened on the right-hand side, and to show that join points can be dropped, we first need to show
that evaluation preserves weakening. These technical details aside, the proof proceeds similarly to
those for the commuting conversions.

5.3 Semantic equivalence of plugging continuations
Just as the Fundamental theorem of semantic equivalence requires related substitution maps and
related join stacks, for the final proof in the next section, we need a notion of related continuations.
Rather than first defining a logical equivalence over continuations, we directly define semantic
equivalence in a way that incorporates plugging. Here, K {𝜎} denotes applying the substitution map
𝜎 to all value and computation subterms of K .

Definition 5.11 (Semantic equivalence of continuations). [Soundness:semK]
Continuations K1 and K2 are semantically equivalent under Γ and Δ at type B1 ⇒ B2, written
Γ ∣ Δ ⊨ K1 ∼ K2 ∶ B1 ⇒ B2 , when for all substitution maps (𝜎 , 𝜏 ) ∈ JΓK, join stacks (𝜑, 𝜓 ) ∈ JΔK,
and computations (n1, n2) ∈ JB1K∗, (joins 𝜑 in K {𝜎}[n1], joins 𝜓 in K {𝜏 }[n2]) ∈ JB2K holds.

A fundamental theorem for semantic equivalence of continuations holds as well, which relies on
the corresponding theorem for terms, as well as congruence of evaluating under plugging.

Lemma 5.12 (E-plug). [CCNF:Evals.plug]
If n1 ⇝∗ n2, then K[n1] ⇝∗ K[n2], by induction on the structure of K .

Theorem 5.13 (Fundamental theorem of semantic eqivalence of continuations).
If Γ ∣ Δ ⊢ K ∶ B1 ⇒ B2 then Γ ∣ Δ ⊨ K ∼ K ∶ B1 ⇒ B2. [Soundness:soundK]

Proof. By induction on the typing derivation of K . In the K-app case, use Theorem 5.9 on the
value argument, and in the K-let case, use Theorem 5.9 on the computation body. In the K-app,
K-fst, and K-snd cases, use E-plug to reduce under the rest of the continuation. �

Plugging semantically equivalent computations into both the same continuation and equivalent
continuations then yields equivalent computations as long as substitution commutes with plugging.

Lemma 5.14 (Substitution commutes with plugging). [CCNF:substPlug]
(K[n]){𝜎} = (K {𝜎})[n{𝜎}], by induction on the structure of K .

https://github.com/anonymous/CBPV/tree/join/CBPV/Commutation.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/Soundness.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/CCNF.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/Soundness.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/CCNF.lean


834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Anon.

Lemma 5.15 (Semantic eqivalence of plugging). [Soundness:semK.plug]
If Γ ∣ Δ ⊨ K1 ∼ K2 ∶ B1 ⇒ B2 and Γ ∣ ⋅ ⊨ n1 ∼ n2 ∶ B1, then Γ ∣ Δ ⊨ K1[n1] ∼ K2[n2] ∶ B2,
trivially after rewriting by Lemma 5.14.

Corollary 5.16. [Soundness:semPlug] If Γ ∣ Δ ⊢ K ∶ B1 ⇒ B2 and Γ ∣ ⋅ ⊨ n1 ∼ n2 ∶ B1, then
Γ ∣ Δ ⊨ K[n1] ∼ K[n2] ∶ B2, using Lemma 5.15 and Theorem 5.13.

5.4 Commuting conversion normalization is semantically equivalent to plugging
Now that we have both semantic equivalence of commuting conversions and of plugging, we use
them together to show that plugging commutes with tail contexts.

Lemma 5.17 (Semantic eqivalence of plugging let expressions). [Soundness:semKletin]
If Γ ∣ Δ ⊢ K ∶ B1 ⇒ B2 and Γ ∣ ⋅ ⊢ let x ← n in m ∶ B1,
then Γ ∣ Δ ⊨ K[let x ← n in m] ∼ let x ← n in K[m] ∶ B2.

Proof. By induction on the typing derivation of K . In the K-nil case, this holds by Theorem 5.9.
In all other cases, the left-hand side involves a subterm of the form let y ← (let x ← n in m) in m′,
or (let x ← n in m) v, or fst (let x ← n in m), or snd (let x ← n in m), so we use derived
rules let-let, let-app, let-fst, and let-snd respectively to commute them. For case K-let, we are
done; for the remaining cases, we require Corollary 5.16 to commute under a plugged K , then use
the induction hypothesis to transitively connect to the right-hand side. �

Lemma 5.18 (Semantic eqivalence of plugging case expressions). [Soundness:semKcase]
If Γ ∣ Δ ⊢ K ∶ B1 ⇒ B2 and Γ ∣ ⋅ ⊢ case v of {inl x ⇒m1; inr y ⇒m2} ∶ B1,
then Γ ∣ Δ ⊨ K[casev of {inlx⇒m1; inry⇒m2}] ∼ casev of {inlx⇒K[m1]; inry⇒K[m2]} ∶ B2.

Proof. By induction on the typing derivation of K , using Theorem 5.9 and Corollary 5.16 along
with derived rules case-let, case-app, case-fst, and case-snd similarly to Lemma 5.17. �

These two lemmas suffice to prove the desired equivalence for a naïve translation that duplicates
continuations instead of using join points. To handle join points, we need one more lemma that
gives an equivalence between a translation that doesn’t use a join point and one that does.

Lemma 5.19 (Jump eqivalence of plugging). [Soundness:semKjoin]
If Γ ∣ Δ ⊢ K ∶ B1 ⇒ B2, Γ ∣ ⋅ ⊢ n ∶ B1, and K ≡ (let x ← � in m) ∷ k1 ∷ … ∷ ki , then
Γ ∣ Δ ⊨ K[n] ∼ join j x = m in K ′[n] ∶ B2, where K

′ ≡ (let x ← � in jump j x) ∷ k1 ∷ … ∷ ki .

Proof. By induction on the typing derivation of K . The rule K-let case uses Theorem 5.9 on
the typing derivation of n to show it must evaluate to some return v; then both sides evaluate
to m{x ↦ v}, and we get the equivalence from Theorem 5.9 on the typing derivation of m. The
remaining cases follow from the induction hypotheses. �

Lemma 5.20 (Jump eqivalence of the translation). [Soundness:soundCCjoin]
Suppose that m contains no join points or jumps. If Γ ∣ Δ ⊢ K ∶ B1 ⇒ B2, Γ ∣ Δ ⊢ m ∶ B1, and
K ≡ (let x ← � in m′) ∷ k1 ∷ … ∷ ki , then Γ ∣ Δ ⊨ JmKK ∼ join j x = m′ in JmKK ′ ∶ B2, where
K ′ ≡ (let x ← � in jump j x) ∷ k1 ∷ … ∷ ki .

Proof. By induction on the typing derivation of m.
• Cases T-force, T-fun, T-ret, and T-prod: Hold directly from Lemma 5.19, using Lemma 4.5
to type translated subterms.

• Cases T-app, T-fst, and T-snd: Hold directly from the induction hypotheses.
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• Case T-let: The goal is to show that Jlet y ← n in mKK is semantically equivalent to
join j x = m′ in Jlet y ← n in mKK ′, which holds by the following chain of equivalences.

Jlet y ← n in mKK
= JnK(let y ← � in JmKK) (by definition)
∼ join j′ y = JmKK in JnK(let y ← � in jump j′ y) (by IH on n)
∼ join j′ y = (join j x = m′ in JmKK ′) in JnK(let y ← � in jump j′ y) (by IH on m)
∼ join j x = m′ in join j′ y = JmKK ′ in JnK(let y ← � in jump j′ y) (by join-join)
∼ join j x = m′ in JnK(let y ← � in JmKK ′) (by IH on n)
= join j x = m′ in Jlet y ← n in mKK ′ (by definition)

• Case T-case: Let the translated computation be case v of {inl y ⇒m1; inr y ⇒m2}. There are
two subcases depending on what m′ is.
– If m′ ≡ jump j′ w , then by the translation, the left-hand side is

case JvK of {inl y ⇒ Jm1KK ; inr y ⇒ Jm2KK },
and the right-hand side is

join j x = m′ in case JvK of {inl y ⇒ Jm1KK ′; inr y ⇒ Jm2KK ′}.
By Theorem 5.9, we know JvK reduces to either some inl w or inr w . WLOG, supposing
the former, it then suffices to show that Jm1KK {y ↦ w} is semantically equivalent to
join j x = m′ in Jm1KK ′{y ↦ w}, which holds by the induction hypothesis on m1.

– Otherwise, both the left- and right-hand sides are
join j x = m′ in case JvK of {inl y ⇒ Jm1KK ′; inr y ⇒ Jm2KK ′},

which are equivalent by Theorem 5.9, using Lemma 4.5 for the translated subterms. �

Finally, we have all pieces to prove the main theorem: the translation under continuation K is
semantically equivalent to plugging into K . The equivalence we want follows from instantiating by
the empty continuation.

Theorem 5.21. [Soundness:soundCC] Suppose that v and m are terms containing no join points
and jumps, and K1,K2 are continuations that may contain join points and jumps.

• If Γ ⊢ v ∶ A then Γ ⊨ v ∼ JvK ∶ A.
• If Γ ∣ ⋅ ⊢ m ∶ B1, Γ ∣ Δ ⊢ K1 ∶ B1 ⇒ B2, Γ ∣ Δ ⊢ K2 ∶ B1 ⇒ B2,
and Γ ∣ Δ ⊨ K1 ∼ K2 ∶ B1 ⇒ B2, then Γ ∣ Δ ⊨ K1[m] ∼ JmKK2 ∶ B2.

Proof. By mutual induction on the typing derivations of v and m.
• Case T-var: Holds by logical equivalence of substitution maps.
• Case T-unit: Trivial.
• Cases T-force, T-fun, T-ret, and T-prod: Hold by Lemma 5.15 and the induction hypotheses.
• Cases T-left, T-right, T-thunk, T-app, T-fst, and T-snd: Hold by the induction hypotheses.
• Case T-let: The goal is to show that K[let x ← n in m] is equivalent to Jlet x ← n in mKK ,
which holds by the following chain of equivalences.

K[let x ← n in m] ∼ let x ← n in K[m] (by Lemma 5.17)
∼ let x ← n in JmKK = (let x ← � in JmKK)[n] (by IH on m)
∼ JnK(let x ← � in JmKK) = Jlet x ← n in mKK (by IH on n)

• Case T-case: The goal is to show that K[case v of {inl y ⇒ m1; inr y ⇒ m2}] is equivalent
to Jcase v of {inl y ⇒m1; inr y ⇒m2}KK . By Lemma 5.18, the left-hand side is equivalent to

https://github.com/anonymous/CBPV/tree/join/CBPV/Soundness.lean
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case v of {inl y ⇒ K[m1]; inr y ⇒ K[m2]}. Furthermore, by the induction hypotheses on the
subterms, this is equivalent to case JvK of {inl y ⇒ Jm1KK ; inr y ⇒ Jm2KK }. It then suffices to
prove this equivalent to the right-hand side. There are two subcases depending on what K is.
– If K ≡ �∷ k1 ∷…∷ ki or K ≡ (let x ← � in jump j v) ∷ k1 ∷…∷ ki , then the right-hand

side is case JvK of {inl y ⇒ Jm1KK ; inr y ⇒ Jm2KK }, and we are done.
– Otherwise, K ≡ (let x ← � in m′) ∷ k1 ∷ … ∷ ki . Letting K ′ ≡ (let x ← � in

jump j x) ∷ k1 ∷ … ∷ ki , the right-hand side is
join j x = m′ in case JvK of {inl y ⇒ Jm1KK ′; inr y ⇒ Jm2KK ′}.

By Theorem 5.9, we know JvK reduces to either some inl w or inr w . WLOG, supposing
the former, it then suffices to show that Jm1KK {y ↦ w} is equivalent to join j x = m′ in
Jm1KK ′{y ↦ w}. Extending the substitution map with y ↦ w (noting that y is only free
in m1), this equivalence holds by Lemma 5.20. �

Corollary 5.22. [Soundness:soundCCnil] Suppose m contains no join points and jumps.
If Γ ∣ ⋅ ⊢ m ∶ B then Γ ∣ ⋅ ⊨ m ∼ JmK� ∶ B.

At last we are able to prove Theorem 5.1, restated below, with one more minor lemma.

Lemma 5.23 (Eqivalent ground values are eqal). [Soundness:𝒱 .ground]
If (v,w) ∈ JT K then v = w , proven by induction on T .

Theorem 5.24. [Soundness:retGround]
Given m such that ⋅ ∣ ⋅ ⊢ m ∶ F T , if m ⇓ return v , then JmK� ⇓ return v .

Proof. From Corollary 5.22, we have ⋅ ∣ ⋅ ⊨ m ∼ JmK� ∶ F T . Instantiating with empty
substitution maps and empty join stacks, we have (𝑚, ⟦𝑚⟧□) ∈ ∗𝐹𝑇 . By inversion, we know that
there exists some (w1,w2) ∈ 𝑇 such that m ⇓ return w1 and JmK� ⇓ return w2. By Corollary 3.3,
we have v = w1, and by Lemma 5.23, we have w1 = w2. Therefore, JmK� ⇓ return v . �

6 Discussion
6.1 Case-of-case
In the lambda calculus with conditional expressions, the case-of-case transformation commutes a
conditional whose scrutinee is another conditional. The naïve transformation directly moves the
outer conditional into the branches of the inner, duplicating the code in its branches.

if (if e1 then e2 else e3) then e4 else e5
⟹ if e1 then (if e2 then e4 else e5) else (if e3 then e4 else e5) [8]

Let-binding the outer branches avoids this duplication. Notably, doing so doesn’t touch the direct
scrutinization of e2 and e3, so if they are literal true or false values, then those branches can be
inlined to just x or y .

if (if e1 then e2 else e3) then e4 else e5
⟹ let x = e4 in let y = e5 in if e1 then (if e2 then x else y) else (if e3 then x else y) [9]

If we translate the left-hand lambda expression to a CBPV term, both CBV and CBN translations
yield a term of the following shape.

let y ← (let x ← m1 in if x then m2 else m3) in if y then m4 else m5 [10]
CC-normalizing this term moves the outer let binding into the branches of the conditional on x ,
with jumps to avoid duplication.

let x ← m1 in join j y = if y then m4 else m5 in

https://github.com/anonymous/CBPV/tree/join/CBPV/Soundness.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/Soundness.lean
https://github.com/anonymous/CBPV/tree/join/CBPV/Soundness.lean
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if x then (let y ← m2 in jump j y) else (let y ← m3 in jump j y) [11]
Unfortunately, even if m2 is the computation return true, inlining it will only reduce the branch
down to jump j true, whose evaluation will still need to jump to the conditional in the join point
that could otherwise have been inlined away statically. What we would like is to create separate
join points for m4 and m5 and jump to them individually to permit the kind of inlining above,
similar to the right-hand side of Equation 9.

let x ← m1 in join j4 = m4 in join j5 = m5 in

if x then (let y ← m2 in if y then jump j4 else jump j5)
else (let y ← m3 in if y then jump j4 else jump j5) [12]

Therefore, we prove a semantic equivalence between Equation 11 and Equation 12, generalizing
to case expressions. Consequently, a transformation from the former to the latter is valid, and we
recover the desired case-of-case transformation.

Lemma 6.1 (Case-of-case). [Commutation:caseCase] Suppose the following hold:

• Γ ⊢ v ∶ A3 + A4
• Γ, y1 ∶ A1 ∣ Δ ⊢ m1 ∶ B
• Γ, y2 ∶ A2 ∣ Δ ⊢ m2 ∶ B
• Γ, y3 ∶ A3 ∣ ⋅ ⊢ m3 ∶ F (A1 + A2)
• Γ, y4 ∶ A4 ∣ ⋅ ⊢ m4 ∶ F (A1 + A2)

Then under contexts Γ, Δ, the computation
join j x = case x of {inl y1 ⇒m1; inr y2 ⇒m2} in
case v of {inl y3 ⇒ (let x ← m3 in jump j x); inr y4 ⇒ (let x ← m3 in jump j x)}

is semantically equivalent at type B to the computation
join j1 y1 = m1 in join j2 y2 = m2 in

case v of {inl y3 ⇒ (let x ← m3 in case x of {inl y1 ⇒ jump j1 y1; inr y2 ⇒ jump j2} y2);
inr y4 ⇒ (let x ← m4 in case x of {inl y1 ⇒ jump j1 y1; inr y2 ⇒ jump j2} y2)}

This transformation applies generally to case-of-case-of-case and so forth. The translation to
CBPV gives join points that contain join points that contain case expressions and so forth. Unnesting
these join points with join-join followed by Lemma 6.1 yields the desired transformation.

6.2 Inlining and CCNF
Recall that new opportunities for inlining revealed by CC-normalization preserve CCNF, since they
only occur in tail positions. However, subsequent inlinings that force direct thunks may violate
CCNF. Consider the following sequence of a commuting conversion, followed by an inlining that
reduces a function, followed by an inlining that forces a thunk.

(let x ← n1 in (𝜆y′. let y ← y′! in m1)) {let z ← n2 in m2}
⟹ let x ← n1 in ((𝜆y′. let y ← y′! in m1) {let z ← n2 in m2}) (commute)
⟹ let x ← n1 in (let y ← {let z ← n2 in m2}! in m1) (E-app)
⟹ let x ← n1 in (let y ← (let z ← n2 in m2) in m1) (E-force)

The resulting term after commuting and inlining once is still in CCNF. But if we force the thunk,
we end up with a nested let expression, which isn’t in CCNF. Therefore, renormalization may be
required only after forcing thunks that appear in n positions as a result of inlining.

https://github.com/anonymous/CBPV/tree/join/CBPV/Commutation.lean
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6.3 Commuting constructors
Our notion of commuting conversions only involves elimination forms, as they make up evaluation
contexts E and tail contexts L. Other work [Forster et al. 2019; Levy 2003] also consider equations
which commuting elimination forms with introduction forms, specifically computation constructors
in tail position, listed below. In particular, the first equation is part of Levy’s sequencing laws.

let x ← n in 𝜆y.m ⟺ 𝜆y. let x ← n in m

case v of {inl y ⇒ 𝜆x .m1; inr z ⇒ 𝜆x .m2} ⟺ 𝜆x . case v of {inl y ⇒m1; inr z ⇒m2}
let x ← n in ⟨m1,m2⟩ ⟺ ⟨let x ← n in m1, let x ← n in m2⟩

case v of {inl y ⇒ ⟨m1,m2⟩; inr z ⇒ ⟨m3,m4⟩} ⟺
⟨case v of {inl y ⇒m1; inr z ⇒m3}, case v of {inl y ⇒m2; inr z ⇒m4}⟩

We don’t consider these because it’s unclear which direction to pick and what benefits they
provide. Going left to right, the case equations only apply when the branches are both exactly
an introduction form, and these naïve pair equations duplicate code, so typing and evaluation
would need to be extended to permit creating join points from the components and jumping from
within pairs. Going right to left, the pair equations only apply when the projections both eliminate
exactly the same thing. Either way, they are sensitive to slight syntactic variation, e.g. permuted let
bindings. Furthermore, neither direction appears to reveal optimization opportunities.

6.4 Extensions and future work
Effects. Like Forster et al. [2019], the CBPV we consider doesn’t include effects. However, by

inspection, we can see that commuting conversions are effect safe. For instance, considering
let y ← (let x ← n1 in n2) in m, if n1, n2, and m contained effects, they would be executed in that
very order according to the evaluation semantics both before and after commutation.

Not all semantically equivalent computations preserve effect order. Given n1 and n2 where
neither x nor y are free, let x ← n1 in let y ← n2 in m is semantically equivalent to let y ←
n2 in let x ← n1 in m, but would swap the order of effects in n1 and n2. We believe that CC-
normalization doesn’t perform extraneous reordering transformations, but rigorously proving it
effect safe requires incorporating effects into the logical relation.

Stack usage. Commuting conversions optimize stack usage. For the CBV lambda calculus, where
the A-reductions of ANF are commuting conversions, Bowman [2024] views ANF as the A-
normalization of monadic normal form (MNF), the syntactic form of the monadic meta-language
by Moggi [1991] that binds intermediate computations. He shows that first taking A-reduction
steps from MNF to ANF optimizes stack usage in comparison to evaluating the original MNF term
under stack machine semantics.

Similarly, we can see that our CBPV commuting conversions may also reduce stack usage. For
instance, considering let y ← (let x ← n1 in n2) in m, stack machine evaluation would first
push let y ← � in m onto the stack, followed by let x ← � in n2, before evaluating n1 and
popping these two stack frames. In contrast, evaluating let x ← n1 in let y ← n2 in m pushes
let x ← � in let y ← n2 in m onto the stack, evaluates n, pops this stack frame, then pushes
let y ← � in m next, using one fewer total stack frame.

Because our translation is a single-pass transformation that uses a continuation rather than
a sequence of commuting conversions, which traverses the term each time, showing that CC-
normalized computations optimize stack usage is nontrivial. It may require going through an
intermediate big-step semantics to track maximum stack usage, similar to how Chen et al. [2025]
use big-step to track space and time usage in their cost model of CBPV.
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Compilation to assembly. One way to reap the benefits of the way commuting conversions unnest
computations is to compile onwards to a lower-level assembly-like language. A potential compilation
target is the lower-level “linearized CBPV” proposed by New [2019], which is a stack machine
language with explicit push/pop and jump operations. We conjecture that CC-normalization prior
to compilation to this language would optimize stack usage, and that our jumps can be compiled
directly to its jumps.

7 Related Work
Forster et al. [2019] mechanize in Rocq a vast amount of metatheory for call-by-push-value,
including normalization and observational equivalence. Our work builds on their design of log-
ical equivalence between terms. They show a number of commuting conversions as semantic
equivalences, namely commuting let-bound let expressions (Lemma 8.4, Equation 5) and function
application of let expressions (Lemma 8.6, Equation 1), but are not comprehensive in listing all
possible commuting conversions systematically as we have done.

Our join points and their typing judgements with a separate join point typing context are inspired
by Maurer et al. [2017], who add join points and jumps to System F, and implement their system in
the Haskell compiler GHC. We simplify the addition by only allowing jumps in tail position, while
they permit jumps in evaluation contexts. They perform their optimizations equation by equation,
which yields intermediate steps that require this permissiveness, such as the following.

(join j x = m in jump j v) w ⟹ join j x = m w in (jump j v) w
⟹ join j x = m w in jump j v

Because we present instead a single-pass algorithm, we never produce such intermediate steps
that need to be typeable, so we are able to eliminate them from our syntax outright. Doing so also
simplifies typing: their jumps need to be typeable with arbitrary types, which they implement
using type polymorphism, while our jumps are always in tail position and fixed to the return type
of the join point they jump to.

Their work on join points is in contrast to earlier work by Kennedy [2007], who argues for CPS
instead of direct-style using second-class continuations, and fromwhomwe borrow the terminology
CC-normalization. Cong et al. [2019] combine ideas from both using control operators that bind
second-class continuations, using them as join points. Their system allows for both direct style and
continuation-passing style optimizations; this is not directly applicable to CBPV, which is already
in direct style by virtue of binding intermediate computations. However, the corresponding dual
of CBPV is stack-passing style [New 2023], and it would be interesting to see whether a similar
technique could be applied. The Zydeco project is ongoing work implementing a compiler from
CBPV to stack-passing style [Jiang et al. 2025].

8 Conclusion
In this paper, we looked at commuting conversions for call-by-push-value, which are syntactic
transformations that preserve evaluation. By commuting evaluation contexts into tail positions,
we unnest computations and expose inlining opportunities. We have identified a commuting
conversion normal form for CBPV and presented a single-pass transformation into CCNF. To avoid
code duplication without incurring additional closures, we used a separate join point construct
that avoids creating new thunks. We have shown that the translation preserves not just typing but
also evaluation, using a logical equivalence to prove that the translation of a term is equivalent to
itself. Our results are entirely mechanized in Lean 4.
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9 Data-Availability Statement
We will submit an artifact for evaluation consisting of our Lean 4 proof development, provided as
supplementary materials for the paper submission.

References
William J. Bowman. 2024. A Low-Level Look at A-Normal Form. Proc. ACM Program. Lang. 8, OOPSLA2 (Oct. 2024), 165–191.

doi:10.1145/3689717
Zhuo Chen, Johannes Åman Pohjola, and Christine Rizkallah. 2025. A Verified Cost Model for Call-by-Push-Value. In

Interactive Theorem Proving (Reykjavik, Iceland) (ITP 2025). Springer International Publishing, Cham, Switzerland, Article
7, 19 pages. doi:10.4230/LIPIcs.ITP.2025.7

Youyou Cong, Leo Osvald, Grégory M. Essertel, and Tiark Rompf. 2019. Compiling with continuations, or without? whatever.
Proc. ACM Program. Lang. 3, ICFP, Article 79 (July 2019), 28 pages. doi:10.1145/3341643

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The Lean Theorem
Prover (System Description). In International Conference on Automated Deduction (Lecture Notes in Computer Science,
Vol. 9195). Springer International Publishing, Cham, Switzerland, 378–388. doi:10.1007/978-3-319-21401-6_26

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. 1993. The essence of compiling with continuations. In
ACM SIGPLAN’93 Conference on Programming Language Design and Implementation (PLDI). Association for Computing
Machinery, Albuquerque, NY, USA, 237–247. doi:10.1145/173262.155113

Yannick Forster, Steven Schäfer, Simon Spies, and Kathrin Stark. 2019. Call-by-push-value in Coq: operational, equational,
and denotational theory. In Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and
Proofs (Cascais, Portugal) (CPP 2019). Association for Computing Machinery, New York, NY, USA, 1180–131. doi:10.
1145/3293880.3294097

Dmitri Garbuzov, William Mansky, Christine Rizkallah, and Steve Zdancewic. 2018. Structural Operational Semantics for
Control Flow Graph Machines. https://arxiv.org/abs/1805.05400

Yuchen Jiang, Max S. New, Tingting Ding, Runze Xue, Yuxuan Xia, and Nathan Varner. 2025. zydeco-lang/zydeco: v0.2.2.
zydeco-lang. doi:10.5281/zenodo.15756916

Andrew Kennedy. 2007. Compiling with continuations, continued. In Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming (Freiburg, Germany) (ICFP ’07). Association for Computing Machinery, New York,
NY, USA, 177–190. doi:10.1145/1291151.1291179

Paul Blain Levy. 2003. Call-By-Push-Value: A Functional/Imperative Synthesis. Springer Dordrecht, Dordrecht, Netherlands.
doi:10.1007/978-94-007-0954-6

Luke Maurer, Zena Ariola, Paul Downen, and Simon Peyton Jones. 2017. Compiling without continuations. In ACM
Conference on Programming Languages Design and Implementation (PLDI’17). Association for Computing Machinery,
New York, NY, USA, 482–494. doi:10.1145/3062341.3062380

Eugenio Moggi. 1991. Notions of computation and monads. Information and Computation 93, 1 (1991), 55–92. doi:10.1016/
0890-5401(91)90052-4

Greg Morrisett, Karl Crary, Neal Glew, and David Walker. 2002. Stack-based typed assembly language. Journal of Functional
Programming 12, 1 (2002), 43–88. doi:10.1017/S0956796801004178

Max S. New. 2019. From Call-by-push-value to Stack-Based TAL? https://maxsnew.com/docs/cbpv-stal-lola-2019.pdf

Max S. New. 2023. Compiling with Call-by-push-value. https://coalg.org/calco-mfps-2023/slides/compiling-with-

cbpv-1.pdf

Christine Rizkallah, Dmitri Garbuzov, and Steve Zdancewic. 2018. A Formal Equational Theory for Call-By-Push-Value.
In Interactive Theorem Proving, Jeremy Avigad and Assia Mahboubi (Eds.). Springer International Publishing, Cham,
Switzerland, 523–541. doi:10.1007/978-3-319-94821-8_31

Zachary J. Sullivan, Paul Downen, and Zena M. Ariola. 2023. Closure Conversion in Little Pieces. In Proceedings of the 25th
International Symposium on Principles and Practice of Declarative Programming (Lisboa, Portugal) (PPDP 2023). Association
for Computing Machinery, New York, NY, USA, Article 10, 13 pages. doi:10.1145/3610612.3610622

https://doi.org/10.1145/3689717
https://doi.org/10.4230/LIPIcs.ITP.2025.7
https://doi.org/10.1145/3341643
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1145/173262.155113
https://doi.org/10.1145/3293880.3294097
https://doi.org/10.1145/3293880.3294097
https://arxiv.org/abs/1805.05400
https://doi.org/10.5281/zenodo.15756916
https://doi.org/10.1145/1291151.1291179
https://doi.org/10.1007/978-94-007-0954-6
https://doi.org/10.1145/3062341.3062380
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1017/S0956796801004178
https://maxsnew.com/docs/cbpv-stal-lola-2019.pdf
https://coalg.org/calco-mfps-2023/slides/compiling-with-cbpv-1.pdf
https://coalg.org/calco-mfps-2023/slides/compiling-with-cbpv-1.pdf
https://doi.org/10.1007/978-3-319-94821-8_31
https://doi.org/10.1145/3610612.3610622

	Abstract
	1 Introduction
	2 Overview
	2.1 Commuting conversions
	2.2 Join points

	3 CBPV with Join Points
	3.1 Evaluation semantics
	3.2 Typing rules

	4 Commuting Conversion Normalization
	4.1 Commuting conversion preserves typing

	5 Commuting Conversion Normalization Preserves Evaluation
	5.1 Logical equivalence and the fundamental theorem
	5.2 Semantic equivalence of commuting conversions
	5.3 Semantic equivalence of plugging continuations
	5.4 Commuting conversion normalization is semantically equivalent to plugging

	6 Discussion
	6.1 Case-of-case
	6.2 Inlining and CCNF
	6.3 Commuting constructors
	6.4 Extensions and future work

	7 Related Work
	8 Conclusion
	9 Data-Availability Statement
	References

